1,953 research outputs found

    Definition Study for Space Shuttle Experiments Involving Large, Steerable Millimeter-Wave Antenna Arrays

    Get PDF
    The potential uses and techniques for the shuttle spacelab Millimeter Wave Large Aperture Antenna Experiment (MWLAE) are documented. Potential uses are identified: applications to radio astronomy, the sensing of atmospheric turbulence by its effect on water vapor line emissions, and the monitoring of oil spills by multifrequency radiometry. IF combining is preferable to RF combining with respect to signal to noise ratio for communications receiving antennas of the size proposed for MWLAE. A design approach using arrays of subapertures is proposed to reduce the number of phase shifters and mixers for uses which require a filled aperture. Correlation radiometry and a scheme utilizing synchronous Dicke switches and IF combining are proposed as potential solutions

    Receiver techniques and detectors for use at millimeter and submillimeter wave lengths Semiannual status report

    Get PDF
    Calculations of vibrational wave functions and excitation cross sections of carbon dioxide molecules, and infrared laser experiment

    System implications of large radiometric array antennas

    Get PDF
    Current radiometric earth and atmospheric sensing systems in the centimeter wavelength range generally employ a directive antenna connected through a single terminal pair to a Dicke receiver. It is shown that this approach does not lend itself to systems with greatly increased spatial resolution. Signal to noise considerations relating to antenna efficiency force the introduction of active elements at the subarray level; thus, if Dicke switching is to be used, it must be distributed throughout the system. Some possible approaches are suggested. The introduction of active elements at the subarray level is found to ease the design constraints on time delay elements, necessary for bandwidth, and on multiple beam generation, required in order to achieve sufficient integration time with high resolution

    Calculation of allowable orbital spacings for the fixed-satellite service

    Get PDF
    Minimum satellite separations are calculated which satisfy a given carrier-to-interference protection ratio for the Fixed-Satellite Service (FSS) on a single-entry basis, assuming circular antenna beams. The results are presented in the form of universal contour curves, in which antenna-centered angles are the coordinates, and also in terms of the more conventional longitude and latitude separations. It is shown that orbit capacity increases with decreasing service-area size and that, for practical service areas, capacity is increased if the longitude of a satellite does not differ too greatly from that of the service area it serves

    Preliminary analysis of 15 GHz scintillations on an ATS-5 satellite-to-ground path

    Get PDF
    Although the ATS 5 satellite failed to de-spin, a rather intricate analysis procedure allows the extraction of scintillation information at spectral rates from 20 to 60 Hz, as well as below 0.5 Hz. The procedure has been applied to 15.3 GHz signals. Distributions and spectra were obtained for a limited amount of data, representing a variety of meteorological conditions. A definite correlation of scintillation strength and variability with rainfall is apparent. The data analysis is continuing

    Engineering calculations for communications systems planning

    Get PDF
    The single entry interference problem is treated for frequency sharing between the broadcasting satellite and intersatellite services near 23 GHz. It is recommended that very long (more than 120 longitude difference) intersatellite hops be relegated to the unshared portion of the band. When this is done, it is found that suitable orbit assignments can be determined easily with the aid of a set of universal curves. An attempt to develop synthesis procedures for optimally assigning frequencies and orbital slots for the broadcasting satellite service in region 2 was initiated. Several discrete programming and continuous optimization techniques are discussed

    Engineering calculations for the Delta S method of solving the orbital allotment problem

    Get PDF
    The method of calculating single-entry separation requirements for pairs of satellites is extended to include the interference on the top link as well as on the down link. Several heuristic models for analyzing the effects of shaped-beam antenna designs on required satellite separations are introduced and demonstrated with gain contour plots. The calculation of aggregate interference is extended to include the effects of up-link interference. The relationship between the single-entry C/I requirements, used in determining satellite separation constraints for various optimization procedures, and the aggregate C/I values of the resulting solutions is discussed

    Engineering calculations for communications satellite systems planning

    Get PDF
    Observed solution times were analyzed for the extended gradient and cyclic coordinate search procedures. The times used in the analysis come from computer runs made during a previously-reported experiment conducted to assess the quality of the solutions to a BSS synthesis problem found by the two search methods. The results of a second experiment with a Fixed Satellite Service (FSS) test problem are also presented. Computational results are summarized for mixed integer programming approaches for solving FSS synthesis problems. A promising heuristic algorithm is described. A synthesis model is discussed for orbital arc allotment optimization. Research plans for the near future are also presented

    Alternative mathematical programming formulations for FSS synthesis

    Get PDF
    A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem

    The role of service areas in the optimization of FSS orbital and frequency assignments

    Get PDF
    A relationship is derived, on a single-entry interference basis, for the minimum allowable spacing between two satellites as a function of electrical parameters and service-area geometries. For circular beams, universal curves relate the topocentric satellite spacing angle to the service-area separation angle measured at the satellite. The corresponding geocentric spacing depends only weakly on the mean longitude of the two satellites, and this is true also for alliptical antenna beams. As a consequence, if frequency channels are preassigned, the orbital assignment synthesis of a satellite system can be formulated as a mixed-integer programming (MIP) problem or approximated by a linear programming (LP) problem, with the interference protection requirements enforced by constraints while some linear function is optimized. Possible objective-function choices are discussed and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed ideal location set. A test problem is posed consisting of six service areas, each served by one satellite, all using elliptical antenna beams and the same frequency channels. Numerical results are given for the three ideal location prescriptions for both the MIP and LP formulations. The resulting scenarios also satisfy reasonable aggregate interference protection requirements
    • …
    corecore