9,529 research outputs found
Quantum dot dephasing by edge states
We calculate the dephasing rate of an electron state in a pinched quantum
dot, due to Coulomb interactions between the electron in the dot and electrons
in a nearby voltage biased ballistic nanostructure. The dephasing is caused by
nonequilibrium time fluctuations of the electron density in the nanostructure,
which create random electric fields in the dot. As a result, the electron level
in the dot fluctuates in time, and the coherent part of the resonant
transmission through the dot is suppressed
Giant isotope effect in the incoherent tunneling specific heat of the molecular nanomagnet Fe8
Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and
the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe
nuclear spins leads to a huge enhancement of the specific heat below 1 K,
ascribed to a strong increase in the spin-lattice relaxation rate Gamma arising
from incoherent, nuclear-spin-mediated magnetic quantum tunneling in the
ground-doublet. Since Gamma is found comparable to the expected tunneling rate,
the latter process has to be inelastic. A model for the coupling of the
tunneling levels to the lattice is presented. Under transverse field, a
crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.Comment: Replaced with version accepted for publication in Physical Review
Letter
Diffuse emission in the presence of inhomogeneous spin-orbit interaction for the purpose of spin filtration
A lateral interface connecting two regions with different strengths of the
Bychkov-Rashba spin-orbit interaction can be used as a spin polarizer of
electrons in two dimensional semiconductor heterostructures. [Khodas \emph{et
al.}, Phys. Rev. Lett. \textbf{92}, 086602 (2004)]. In this paper we consider
the case when one of the two regions is ballistic, while the other one is
diffusive. We generalize the technique developed for the solution of the
problem of the diffuse emission to the case of the spin dependent scattering at
the interface, and determine the distribution of electrons emitted from the
diffusive region. It is shown that the diffuse emission is an effective way to
get electrons propagating at small angles to the interface that are most
appropriate for the spin filtration and a subsequent spin manipulation.
Finally, a scheme is proposed of a spin filter device, see Fig. 9, that creates
two almost fully spin-polarized beams of electrons.Comment: 11 pages, 9 figure
Quantized adiabatic quantum pumping due to interference
Recent theoretical calculations, demonstrating that quantized charge transfer
due to adiabatically modulated potentials in mesoscopic devices can result
purely from the interference of the electron wave functions (without invoking
electron-electron interactions) are reviewed: (1) A new formula is derived for
the pumped charge Q (per period); It reproduces the Brouwer formula without a
bias, and also yields the effect of the modulating potential on the Landauer
formula in the presence of a bias. (2) For a turnstile geometry, with
time-dependent gate voltages V_L(t) and V_R(t), the magnitude and sign of Q are
determined by the relative position and orientation of the closed contour
traversed by the system in the {V_L-V_R} plane, relative to the transmission
resonances in that plane. Integer values of Q (in units of e) are achieved when
a transmission peak falls inside the contour, and are given by the winding
number of the contour. (3) When the modulating potential is due to surface
acoustic waves, Q exhibits a staircase structure, with integer values,
reminiscent of experimental observations.Comment: Invited talk, Localization, Tokyo, August 200
Acoustoelectric current and pumping in a ballistic quantum point contact
The acoustoelectric current induced by a surface acoustic wave (SAW) in a
ballistic quantum point contact is considered using a quantum approach. We find
that the current is of the "pumping" type and is not related to drag, i.e. to
the momentum transfer from the wave to the electron gas. At gate voltages
corresponding to the plateaus of the quantized conductance the current is
small. It is peaked at the conductance step voltages. The peak current
oscillates and decays with increasing SAW wavenumber for short wavelengths.
These results contradict previous calculations, based on the classical
Boltzmann equation.Comment: 4 pages, 1 figur
The end points in the dispersion of Holstein polarons
We investigate the existence of end points in the dispersion of Holstein
polarons in various dimensions, using the Momentum Average approximation which
has proved to be very accurate for this model. An end point separates momenta
for which the lowest-energy state is a discrete level, i.e., an
infinitely-lived polaron, from those where the lowest-energy feature is a
continuum in which the "polaron'" is signalled by a resonance with a finite
lifetime. While such end points are known to not appear in 1D, we show here
that they are generic in 3D if the particle-boson coupling is not too strong.
The 2D case is "critical": a pure 2D Holstein model has no end points, like the
1D case. However, any amount of interlayer hopping leads to 3D-like behavior.
As a result, such end points are expected to appear in the spectra of layered,
quasi-2D systems described by Holstein models. Generalizations to other models
are also briefly discussed.Comment: 6 pages, 6 figure
Adiabatic transport in nanostructures
A confined system of non-interacting electrons, subject to the combined
effect of a time-dependent potential and different external
chemical-potentials, is considered. The current flowing through such a system
is obtained for arbitrary strengths of the modulating potential, using the
adiabatic approximation in an iterative manner. A new formula is derived for
the charge pumped through an un-biased system (all external chemical potentials
are kept at the same value); It reproduces the Brouwer formula for a
two-terminal nanostructure. The formalism presented yields the effect of the
chemical potential bias on the pumped charge on one hand, and the modification
of the Landauer formula (which gives the current in response to a constant
chemical-potential difference) brought about by the modulating potential on the
other. Corrections to the adiabatic approximation are derived and discussed.Comment: 8 pages, 2 figure
Acoustoelectric effect in a finite-length ballistic quantum channel
The dc current induced by a coherent surface acoustic wave (SAW) of wave
vector q in a ballistic channel of length L is calculated. The current contains
two contributions, even and odd in q. The even current exists only in a
asymmetric channel, when the electron reflection coefficients r_1 and r_2 at
both channel ends are different. The direction of the even current does not
depend on the direction of the SAW propagation, but is reversed upon
interchanging r_1 and r_2. The direction of the odd current is correlated with
the direction of the SAW propagation, but is insensitive to the interchange of
r_1 and r_2. It is shown that both contributions to the current are non zero
only when the electron reflection coefficients at the channel ends are energy
dependent. The current exhibits geometric oscillations as function of qL. These
oscillations are the hallmark of the coherence of the SAW and are completely
washed out when the current is induced by a flux of non-coherent phonons. The
results are compared with those obtained previously by different methods and
under different assumptions.Comment: 7 pages, 2 figure
Entanglement, measurement, and conditional evolution of the Kondo singlet interacting with a mesoscopic detector
We investigate various aspects of the Kondo singlet in a quantum dot (QD)
electrostatically coupled to a mesoscopic detector. The two subsystems are
represented by an entangled state between the Kondo singlet and the
charge-dependent detector state. We show that the phase-coherence of the Kondo
singlet is destroyed in a way that is sensitive to the charge-state information
restored both in the magnitude and in the phase of the scattering coefficients
of the detector. We also introduce the notion of the `conditional evolution' of
the Kondo singlet under projective measurement on the detector. Our study
reveals that the state of the composite system is disentangled upon this
measurement. The Kondo singlet evolves into a particular state with a fixed
number of electrons in the quantum dot. Its relaxation time is shown to be
sensitive only to the QD-charge dependence of the transmission probability in
the detector, which implies that the phase information is erased in this
conditional evolution process. We discuss implications of our observations in
view of the possible experimental realization.Comment: Focus issue on "Interference in Mesoscopic Systems" of New J. Phy
- …