11,757 research outputs found
Keeping California cool: Recent cool community developments
In 2006, California introduced the Global Warming Solutions Act (Assembly Bill 32), which requires the state to reduce greenhouse gas emissions to 1990 levels by 2020. "Cool community" strategies, including cool roofs, cool pavements, cool walls and urban vegetation, have been identified as voluntary measures with potential to reduce statewide emissions. In addition, cool community strategies provide co-benefits for residents of California, such as reduced utility bills, improved air quality and enhanced urban livability. To achieve these savings, Lawrence Berkeley National Laboratory (LBNL) has worked with state and local officials, non-profit organizations, school districts, utilities, and manufacturers for 4 years to advance the science and implementation of cool community strategies. This paper summarizes the accomplishments of this program, as well as recent developments in cool community policy in California and other national and international efforts. We also outline lessons learned from these efforts to characterize successful programs and policies to be replicated in the future
Comparison of software models for energy savings from cool roofs
A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savings to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties
A Compact Fireball Model of Gamma Ray Bursts
It is proposed that the gamma ray burst photons near the peak of the spectrum
at several hundred KeV are produced on very compact scales, where photon
production is limited by blackbody effects and/or the requirement of energetic
quanta () for efficient further production. The fast variation of
order milliseconds in the time profile is then a natural expectation, given the
other observed GRB parameters. Analytic calculations are presented to show that
the escape of non-thermal, energetic gamma rays can emerge within a second of
the thermal photons from a gammasphere of below cm. The minimum
asymptotic bulk Lorentz factor in this model is found to be of order several
hundred if the photosphere is of order cm and greater for
larger or smaller photospheric radii. It is suggested that prompt UHE gamma
rays might provide a new constraint on the asymptotic Lorentz factor of the
outflow.Comment: To appear in ApJ, revisions requested by the refere
Realising the school science curriculum
This article identifies historical, pedagogical and epistemological problems which distance the school science curriculum from social questions, and issues of social justice more specifically. Drawing on a critical realist approach it addresses these problems and aims to demonstrate that social justice lies at the heart of inquiry in science in schools
Recommended from our members
Life cycle assessment of white roof and sedum-tray garden roof for office buildings in China
White roof (WR) and Sedum lineare tray garden roof (STGR) have been convinced to improve the energy-efficiency and provide various benefits for conventional impervious grey roofs. Some national and local standards have standardized and recommended these technologies in existing building retrofits, however, they do not include assessment and choice of a particular roof retrofit in different climates. This paper presents a 40-year life-cycle cost analysis (LCCA) of an office building roof retrofitted by adding either WR or STGR over an existing grey roof in five cities, located in four Chinese climate zones. The LCCA find that the WR retrofits exhibit positive life-cycle net savings (NS) in warm winter zones, ranging 5.7â35.1 CNY/m 2 , and STGR retrofits have negative NS of -81.3â -16.7 CNY/m 2 in all climate zones. The NS of both WR and STGR generally tend to improve as one moves from the coldest cities to the warmest cities. LCCA results suggest that adding new building codes concerning crediting or prescribing WR and STGR retrofits into office buildings with grey roofs in hot summer climate zones and warm winter zone in China, respectively. And featured by more specific requirements, the localized Technical Norms help promote the implementation of new building codes
Using solar availability factors to adjust cool-wall energy savings for shading and reflection by neighboring buildings
The extent to which a solar-reflective âcoolâ wall can reduce a building's cooling load in summer or increase its heating load in winter scales with the wall's incident solar radiation, or solar availability. We assess how the solar availability at the wall of a central (modeled) building is affected by a neighboring wall across an urban canyon by calculating the central wall's solar availability factor (SAF), defined as the ratio of sunlight incident on the central wall in the presence of the neighboring wall to that incident in the absence of the neighboring wall. Cool-wall heating, ventilation, and air conditioning (HVAC) energy savings simulated for an isolated central building (no neighbors) can be multiplied by SAFs to account for interactions with neighboring walls. Monthly values of SAF were evaluated in 17 climates across the United States, including three in California, for north, east, south, and west central walls, over a wide range of canyon aspect ratio (height/width). Results for four representative aspect ratiosâ0.2, 1, 2, and 10âare presented. In Fresno, CA, monthly SAF ranges from 0.90 to 0.96 for central walls facing north, east, south, or west when the aspect ratio is 0.2 (two-story single-family homes across a street) and both the central and neighboring walls are conventional (albedo 0.25). Monthly SAFs decrease as aspect ratio rises, falling to 0.06â0.24 at an aspect ratio of 10 (adjacent 10-story buildings on the same side of the street). An example worked for a two-story single-family home in Fresno on the west side of a residential street yields SAFs of 0.47 (north), 0.92 (east), 0.50 (south), and 0.63 (west) to apply to the cool-wall annual HVAC energy savings computed for an isolated central building. Shading and reflection reduce the home's annual HVAC energy cost savings by 31%
Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building
This study presents the experimental measurement of the energy consumption of three top-floor air-conditioned rooms in a typical office building in Chongqing, which is a mountainous city in the hot-summer and cold-winter zone of China, to examine the energy performance of white and sedum-tray garden roofs. The energy consumption of the three rooms was measured from September 2014 to September 2015 by monitoring the energy performance (temperature distributions of the roofs, evaporation, heat fluxes, and energy consumption) and indoor air temperature. The rooms had the same construction and appliances, except that one roof top was black, one was white, and one had a sedum-tray garden roof. This study references the International Performance Measurement and Verification Protocol (IPMVP) to calculate and compare the energy savings of the three kinds of roofs. The results indicate that the energy savings ratios of the rooms with the sedum-tray garden roof and with the white roof were 25.0% and 20.5%, respectively, as compared with the black-roofed room, in the summer; by contrast, the energy savings ratios were â9.9% and â2.7%, respectively, in the winter. Furthermore, Annual conditioning energy savings of white roof (3.9 kWh/m2) were 1.6 times the energy savings for the sedum-tray garden roof. It is evident that white roof is a preferable choice for office buildings in Chongqing. Additionally, The white roof had a reflectance of 0.58 after natural aging owing to the serious air pollution worsened its thermal performance, and the energy savings reduced by 0.033 kWh/m2·d. Evaporation was also identified to have a significant effect on the energy savings of the sedum-tray garden roof
Probing Micro-quasars with TeV Neutrinos
The jets associated with Galactic micro-quasars are believed to be ejected by
accreting stellar mass black-holes or neutron stars. We show that if the energy
content of the jets in the transient sources is dominated by electron-proton
plasma, then a several hour outburst of 1--100 TeV neutrinos produced by photo-
meson interactions should precede the radio flares associated with major
ejection events. Several neutrinos may be detected during a single outburst by
a 1km^2 detector, thereby providing a powerful probe of micro-quasars jet
physics.Comment: Accepted to PRL. More detailed discussion of particle acceleratio
Shading and Smothering of Gamma Ray Bursts
The gamma ray burst (GRB) 980425 is distinctive in that it seems to be
associated with supernova (SN) 1998bw, has no X-ray afterglow, and has a single
peak light curve and a soft spectrum. The supernova is itself unusual in that
its expansion velocity exceeds c/6. We suggest that many of these features can
be accounted for with the hypothesis that we observe the GRB along a penumbral
line of sight that contains mainly photons that have scattered off ejected
baryons. The hypothesis suggests a baryon poor jet (BPJ) existing within a
baryon rich outflow. The sharp distinction can be attributed to whether or not
the magnetic field lines thread an event horizon. Such a configuration suggests
that there will be some non-thermal acceleration of pick-up ex-neutrons within
the BPJ. This scenario might produce observable spallation products and
neutrinos.Comment: 7 pages, 2 figures, submitted to ApJ
- âŠ