25 research outputs found
Sensitivity of GOCE gradients on Greenland mass variation and changes in ice topography
Abstract
The Gravity field and steady state Ocean Circulation Explorer (GOCE) maps variations in the gravity field by observing second order derivatives (gradients) of the Earth gravitational potential. Flying in the low altitude of 255 km and having a spatially dense data distribution of short wavelengths of the gravity field, GOCE may be used to enhance the time varying gravity signal coming fromthe GRACE satellites.
The GOCE gradients may potentially be used for the determination of residual masses in local regions. This can be done using Least-Squares Collocation (LSC) or the Reduced Point Mass (RPM) method. In this study, different gravity field solutions are calculated by the use of RPM, LSC and GOCE gradients, respectively. Gravity field time series are created and presented for the six consecutive months of GOCE gradient observations, data being acquired between November 2009 and June 2010. Corresponding gravity anomaly results are used for the calculation of ice mass changes by the use of theRPMmethod. The results are then compared with the computed topographic effect of the ice by the use of a modified topographic correction and the Gravsoft TC program.
The maximal gravity changes at the ground predicted from GOCE gradients are between 2 and 4 mGal for the period considered. The gravity anomaly estimation error arising from the GOCE gradient data using only Tzz with an associated error of 20 mE is 11 mGal. This analysis shows the potential of using GOCE data for observations of ice mass changes although the GOCE dataset is limited to only six months. We expect four years of GOCE gradient observations to be available by mid-2014. This will increase the accuracy and spatial resolution of the GOCE measurements, which may lead to an accuracy necessary for observing ice mass changes.</jats:p
The evolution of Wide-Area DInSAR: from regional and national services to the European Ground Motion Service
This study is focused on wide-area deformation monitoring initiatives based on the differential interferometric SAR technique (DInSAR). In particular, it addresses the use of advanced DInSAR (A-DInSAR) techniques, which are based on large sets of synthetic aperture radar (SAR) and Copernicus Sentinel-1 images. Such techniques have undergone a dramatic development in the last twenty years: they are now capable to process big sets of SAR images and can be exploited to realize a wide-area A-DInSAR monitoring. The study describes several initiatives to establish wide-area ground motion services (GMS), both at county- and region-level. In the second part of the study, some of the key technical aspects related to wide-area A-DInSAR monitoring are discussed. Finally, the last part of the study is devoted to the European ground motion service (EGMS), which is part of the Copernicus land monitoring service. It represents the most important wide-area A-DInSAR deformation monitoring system ever developed. The study describes its main characteristics and its main products. The end of the production of the first EGMS baseline product is foreseen for the last quarter of 202