254 research outputs found

    Three-body problem in a two-dimensional Fermi gas

    Full text link
    We investigate the three-body properties of two identical "up" fermions and one distinguishable "down" atom interacting in a strongly confined two-dimensional geometry. We compute exactly the atom-dimer scattering properties and the three-body recombination rate as a function of collision energy and mass ratio m_up/m_down. We find that the recombination rate for fermions is strongly energy dependent, with significant contributions from higher partial waves at low energies. For m_up < m_down, the s-wave atom-dimer scattering below threshold is completely described by the scattering length. Furthermore, we examine the "up-up-down" bound states (trimers) appearing at large m_up/m_down and find that the energy spectrum for the deepest bound trimers resembles that of a hydrogen atom confined to two dimensions.Comment: 6 pages, 6 figure

    SU(N) Fermions in a One-Dimensional Harmonic Trap

    Full text link
    We conduct a theoretical study of SU(N) fermions confined by a one-dimensional harmonic potential. Firstly, we introduce a new numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU(N) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz - derived for a Heisenberg SU(2) spin chain - is extendable to these N-component systems. Lastly, we consider balanced SU(N) Fermi gases that have an equal number of particles in each spin state for N=2, 3, 4. In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N-component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.Comment: 15 pages, 6 figure

    Atom-dimer and dimer-dimer scattering in fermionic mixtures near a narrow Feshbach resonance

    Full text link
    We develop a diagrammatic approach for solving few-body problems in heteronuclear fermionic mixtures near a narrow interspecies Feshbach resonance. We calculate s-, p-, and d-wave phaseshifts for the scattering of an atom by a weakly-bound dimer. The fermionic statistics of atoms and the composite nature of the dimer lead to a strong angular momentum dependence of the atom-dimer interaction, which manifests itself in a peculiar interference of the scattered s- and p-waves. This effect strengthens with the mass ratio and is remarkably pronounced in 40K-(40K-6Li) atom-dimer collisions. We calculate the scattering length for two dimers formed near a narrow interspecies resonance. Finally, we discuss the collisional relaxation of the dimers to deeply bound states and evaluate the corresponding rate constant as a function of the detuning and collision energy.Comment: 16 pages, 21 figures. Submitted to EPJD, EuroQUAM special issue "Cold Quantum Matter - Achievements and Prospects

    Atom-dimer scattering and long-lived trimers in fermionic mixtures

    Full text link
    We consider a heteronuclear fermionic mixture on the molecular side of an interspecies Feshbach resonance and discuss atom-dimer scattering properties in uniform space and in the presence of an external confining potential, restricting the system to a quasi-2D geometry. We find that there is a peculiar atom-dimer p-wave resonance which can be tuned by changing the frequency of the confinement. Our results have implications for the ongoing experiments on Lithium-Potassium mixtures, where this mechanism allows for switching the p-wave interaction between a K atom and Li-K dimer from attractive to repulsive, and forming a weakly bound trimer with unit angular momentum. We show that such trimers are long-lived and the atom-dimer resonance does not enhance inelastic relaxation in the mixture, making it an outstanding candidate for studies of p-wave resonance effects in a many-body system.Comment: 4 pages, 2 figures, published versio

    Finite-temperature behavior of the Bose polaron

    Full text link
    We consider a mobile impurity immersed in a Bose gas at finite temperature. Using perturbation theory valid for weak coupling between the impurity and the bosons, we derive analytical results for the energy and damping of the impurity for low and high temperatures, as well as for temperatures close to the critical temperature TcT_c for Bose-Einstein condensation. These results show that the properties of the impurity vary strongly with temperature. In particular, the energy exhibits a non-monotonic behavior close to TcT_c, and the damping rises sharply close to TcT_c. We argue that this behaviour is generic for impurities immersed in an environment undergoing a phase transition that breaks a continuous symmetry. Finally, we discuss how these effects can be detected experimentally.Comment: 10 pages and 6 figure

    Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential

    Get PDF
    A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights since they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. Here, we propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal's triangle emerges in the expression for the ground-state wavefunction. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount

    Strongly-resonant p-wave superfluids

    Full text link
    We study theoretically a dilute gas of identical fermions interacting via a p-wave resonance. We show that, depending on the microscopic physics, there are two distinct regimes of p-wave resonant superfluids, which we term "weak" and "strong". Although expected naively to form a BCS-BEC superfluid, a strongly-resonant p-wave superfluid is in fact unstable towards the formation of a gas of fermionic triplets. We examine this instability and estimate the lifetime of the p-wave molecules due to the collisional relaxation into triplets. We discuss consequences for the experimental achievement of p-wave superfluids in both weakly- and strongly-resonant regimes

    Bound states in a quasi-two-dimensional Fermi gas

    Get PDF
    We consider the problem of N identical fermions of mass M and one distinguishable particle of mass m interacting via short-range interactions in a confined quasi-two-dimensional (quasi-2D) geometry. For N=2 and mass ratios M/m<13.6, we find non-Efimov trimers that smoothly evolve from 2D to 3D. In the limit of strong 2D confinement, we show that the energy of the N+1 system can be approximated by an effective two-channel model. We use this approximation to solve the 3+1 problem and we find that a bound tetramer can exist for mass ratios M/m as low as 5 for strong confinement, thus providing the first example of a universal, non-Efimov tetramer involving three identical fermions.Comment: 5 pages, 4 figure

    Observation of an orbital interaction-induced Feshbach resonance in 173-Yb

    Full text link
    We report on the experimental observation of a novel inter-orbital Feshbach resonance in ultracold 173-Yb atoms, which opens the possibility of tuning the interactions between the 1S0 and 3P0 metastable state, both possessing vanishing total electronic angular momentum. The resonance is observed at experimentally accessible magnetic field strengths and occurs universally for all hyperfine state combinations. We characterize the resonance in the bulk via inter-orbital cross-thermalization as well as in a three-dimensional lattice using high-resolution clock-line spectroscopy.Comment: 5 pages, 4 figure
    • …
    corecore