24,335 research outputs found
Condensation and coexistence in a two-species driven model
Condensation transition in two-species driven systems in a ring geometry is
studied in the case where current-density relation of a domain of particles
exhibits two degenerate maxima. It is found that the two maximal current phases
coexist both in the fluctuating domains of the fluid and in the condensate,
when it exists. This has a profound effect on the steady state properties of
the model. In particular, phase separation becomes more favorable, as compared
with the case of a single maximum in the current-density relation. Moreover, a
selection mechanism imposes equal currents flowing out of the condensate,
resulting in a neutral fluid even when the total number of particles of the two
species are not equal. In this case the particle imbalance shows up only in the
condensate
Urban wastewater reuse for crop production in the water-short Guanajuato River Basin, Mexico
Water quality / Waste waters / Water reuse / Water resource management / River basins / Irrigation water / Crop production / Water use / Data collection / Case studies / Mexico / Guanajuato River Basin / Tula Irrigation District
Performance of two transferred modules in the Lagunera Region: Water relations
Water policy / Performance / Privatization / Irrigation systems / Operations / Maintenance / Irrigation efficiency / Water users' associations / Water rights / Water allocation / Water supply / Water distribution
Detecting many-body entanglements in noninteracting ultracold atomic fermi gases
We explore the possibility of detecting many-body entanglement using
time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In
analogy to the vacuum correlations responsible for Bekenstein-Hawking black
hole entropy, a partitioned atomic gas will exhibit particle-hole correlations
responsible for entanglement entropy. The signature of these momentum
correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added
reference
Signal processing in local neuronal circuits based on activity-dependent noise and competition
We study the characteristics of weak signal detection by a recurrent neuronal
network with plastic synaptic coupling. It is shown that in the presence of an
asynchronous component in synaptic transmission, the network acquires
selectivity with respect to the frequency of weak periodic stimuli. For
non-periodic frequency-modulated stimuli, the response is quantified by the
mutual information between input (signal) and output (network's activity), and
is optimized by synaptic depression. Introducing correlations in signal
structure resulted in the decrease of input-output mutual information. Our
results suggest that in neural systems with plastic connectivity, information
is not merely carried passively by the signal; rather, the information content
of the signal itself might determine the mode of its processing by a local
neuronal circuit.Comment: 15 pages, 4 pages, in press for "Chaos
- …