14,708 research outputs found
Zero dimensional area law in a gapless fermion system
The entanglement entropy of a gapless fermion subsystem coupled to a gapless
bulk by a "weak link" is considered. It is demonstrated numerically that each
independent weak link contributes an entropy proportional to lnL, where L is
linear dimension of the subsystem.Comment: 6 pages, 11 figures; added 3d computatio
Identifying and Indexing Icosahedral Quasicrystals from Powder Diffraction Patterns
We present a scheme to identify quasicrystals based on powder diffraction
data and to provide a standardized indexing. We apply our scheme to a large
catalog of powder diffraction patterns, including natural minerals, to look for
new quasicrystals. Based on our tests, we have found promising candidates
worthy of further exploration.Comment: 4 pages, 1 figur
Structural Properties and Relative Stability of (Meta)Stable Ordered, Partially-ordered and Disordered Al-Li Alloy Phases
We resolve issues that have plagued reliable prediction of relative phase
stability for solid-solutions and compounds. Due to its commercially important
phase diagram, we showcase Al-Li system because historically density-functional
theory (DFT) results show large scatter and limited success in predicting the
structural properties and stability of solid-solutions relative to ordered
compounds. Using recent advances in an optimal basis-set representation of the
topology of electronic charge density (and, hence, atomic size), we present DFT
results that agree reasonably well with all known experimental data for the
structural properties and formation energies of ordered, off-stoichiometric
partially-ordered and disordered alloys, opening the way for reliable study in
complex alloys.Comment: 7 pages, 2 figures, 2 Table
What is a crystal?
Almost 25 years have passed since Shechtman discovered quasicrystals, and 15
years since the Commission on Aperiodic Crystals of the International Union of
Crystallography put forth a provisional definition of the term crystal to mean
``any solid having an essentially discrete diffraction diagram.'' Have we
learned enough about crystallinity in the last 25 years, or do we need more
time to explore additional physical systems? There is much confusion and
contradiction in the literature in using the term crystal. Are we ready now to
propose a permanent definition for crystal to be used by all? I argue that time
has come to put a sense of order in all the confusion.Comment: Submitted to Zeitschrift fuer Kristallographi
Who gets credit for AI-generated art?
The recent sale of an artificial intelligence (AI)-generated portrait for $432,000 at Christie's art auction has raised questions about how credit and responsibility should be allocated to individuals involved and how the anthropomorphic perception of the AI system contributed to the artwork's success. Here, we identify natural heterogeneity in the extent to which different people perceive AI as anthropomorphic. We find that differences in the perception of AI anthropomorphicity are associated with different allocations of responsibility to the AI system and credit to different stakeholders involved in art production. We then show that perceptions of AI anthropomorphicity can be manipulated by changing the language used to talk about AI—as a tool versus agent—with consequences for artists and AI practitioners. Our findings shed light on what is at stake when we anthropomorphize AI systems and offer an empirical lens to reason about how to allocate credit and responsibility to human stakeholders
Ab initio density functional investigation of B_24 cluster: Rings, Tubes, Planes, and Cages
We investigate the equilibrium geometries and the systematics of bonding in
various isomers of a 24-atom boron cluster using Born-Oppenheimer molecular
dynamics within the framework of density functional theory. The isomers studied
are the rings, the convex and the quasiplanar structures, the tubes and, the
closed structures. A staggered double-ring is found to be the most stable
structure amongst the isomers studied. Our calculations reveal that a 24-atom
boron cluster does form closed 3-d structures. All isomers show staggered
arrangement of nearest neighbor atoms. Such a staggering facilitates
hybridization in boron cluster. A polarization of bonds between the peripheral
atoms in the ring and the planar isomers is also seen. Finally, we discuss the
fusion of two boron icosahedra. We find that the fusion occurs when the
distance between the two icosahedra is less than a critical distance of about
6.5a.u.Comment: 8 pages, 9 figures in jpeg format Editorially approved for
publication in Phys. Rev.
Wave Mechanics of a Two Wire Atomic Beamsplitter
We consider the problem of an atomic beam propagating quantum mechanically
through an atom beam splitter. Casting the problem in an adiabatic
representation (in the spirit of the Born-Oppenheimer approximation in
molecular physics) sheds light on explicit effects due to non-adiabatic passage
of the atoms through the splitter region. We are thus able to probe the fully
three dimensional structure of the beam splitter, gathering quantitative
information about mode-mixing, splitting ratios,and reflection and transmission
probabilities
Cold collisions of OH and Rb. I: the free collision
We have calculated elastic and state-resolved inelastic cross sections for
cold and ultracold collisions in the Rb() + OH() system,
including fine-structure and hyperfine effects. We have developed a new set of
five potential energy surfaces for Rb-OH() from high-level {\em ab
initio} electronic structure calculations, which exhibit conical intersections
between covalent and ion-pair states. The surfaces are transformed to a
quasidiabatic representation. The collision problem is expanded in a set of
channels suitable for handling the system in the presence of electric and/or
magnetic fields, although we consider the zero-field limit in this work.
Because of the large number of scattering channels involved, we propose and
make use of suitable approximations. To account for the hyperfine structure of
both collision partners in the short-range region we develop a
frame-transformation procedure which includes most of the hyperfine
Hamiltonian. Scattering cross sections on the order of cm are
predicted for temperatures typical of Stark decelerators. We also conclude that
spin orientation of the partners is completely disrupted during the collision.
Implications for both sympathetic cooling of OH molecules in an environment of
ultracold Rb atoms and experimental observability of the collisions are
discussed.Comment: 20 pages, 16 figure
Weak Charge Quantization as an Instanton of Interacting sigma-model
Coulomb blockade in a quantum dot attached to a diffusive conductor is
considered in the framework of the non-linear sigma-model. It is shown that the
weak charge quantization on the dot is associated with instanton configurations
of the Q-field in the conductor. The instantons have a finite action and are
replica non--symmetric. It is argued that such instantons may play a role in
the transition regime to the interacting insulator.Comment: 4 pages. The 2D case substantially modifie
Equivariant pretheories and invariants of torsors
In the present paper we introduce and study the notion of an equivariant
pretheory: basic examples include equivariant Chow groups, equivariant K-theory
and equivariant algebraic cobordism. To extend this set of examples we define
an equivariant (co)homology theory with coefficients in a Rost cycle module and
provide a version of Merkurjev's (equivariant K-theory) spectral sequence for
such a theory. As an application we generalize the theorem of
Karpenko-Merkurjev on G-torsors and rational cycles; to every G-torsor E and a
G-equivariant pretheory we associate a graded ring which serves as an invariant
of E. In the case of Chow groups this ring encodes the information concerning
the motivic J-invariant of E and in the case of Grothendieck's K_0 -- indexes
of the respective Tits algebras.Comment: 23 pages; this is an essentially extended version of the previous
preprint: the construction of an equivariant cycle (co)homology and the
spectral sequence (generalizing the long exact localization sequence) are
adde
- …