56 research outputs found

    Covariance regularization by thresholding

    Full text link
    This paper considers regularizing a covariance matrix of pp variables estimated from nn observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or sub-Gaussian, and (logp)/n0(\log p)/n\to0, and obtain explicit rates. The results are uniform over families of covariance matrices which satisfy a fairly natural notion of sparsity. We discuss an intuitive resampling scheme for threshold selection and prove a general cross-validation result that justifies this approach. We also compare thresholding to other covariance estimators in simulations and on an example from climate data.Comment: Published in at http://dx.doi.org/10.1214/08-AOS600 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The method of moments and degree distributions for network models

    Full text link
    Probability models on graphs are becoming increasingly important in many applications, but statistical tools for fitting such models are not yet well developed. Here we propose a general method of moments approach that can be used to fit a large class of probability models through empirical counts of certain patterns in a graph. We establish some general asymptotic properties of empirical graph moments and prove consistency of the estimates as the graph size grows for all ranges of the average degree including Ω(1)\Omega(1). Additional results are obtained for the important special case of degree distributions.Comment: Published in at http://dx.doi.org/10.1214/11-AOS904 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimization via Low-rank Approximation for Community Detection in Networks

    Full text link
    Community detection is one of the fundamental problems of network analysis, for which a number of methods have been proposed. Most model-based or criteria-based methods have to solve an optimization problem over a discrete set of labels to find communities, which is computationally infeasible. Some fast spectral algorithms have been proposed for specific methods or models, but only on a case-by-case basis. Here we propose a general approach for maximizing a function of a network adjacency matrix over discrete labels by projecting the set of labels onto a subspace approximating the leading eigenvectors of the expected adjacency matrix. This projection onto a low-dimensional space makes the feasible set of labels much smaller and the optimization problem much easier. We prove a general result about this method and show how to apply it to several previously proposed community detection criteria, establishing its consistency for label estimation in each case and demonstrating the fundamental connection between spectral properties of the network and various model-based approaches to community detection. Simulations and applications to real-world data are included to demonstrate our method performs well for multiple problems over a wide range of parameters.Comment: 45 pages, 7 figures; added discussions about computational complexity and extension to more than two communitie
    corecore