47,645 research outputs found
Dynamics of Black Hole Pairs II: Spherical Orbits and the Homoclinic Limit of Zoom-Whirliness
Spinning black hole pairs exhibit a range of complicated dynamical behaviors.
An interest in eccentric and zoom-whirl orbits has ironically inspired the
focus of this paper: the constant radius orbits. When black hole spins are
misaligned, the constant radius orbits are not circles but rather lie on the
surface of a sphere and have acquired the name "spherical orbits". The
spherical orbits are significant as they energetically frame the distribution
of all orbits. In addition, each unstable spherical orbit is asymptotically
approached by an orbit that whirls an infinite number of times, known as a
homoclinic orbit. A homoclinic trajectory is an infinite whirl limit of the
zoom-whirl spectrum and has a further significance as the separatrix between
inspiral and plunge for eccentric orbits. We work in the context of two
spinning black holes of comparable mass as described in the 3PN Hamiltonian
with spin-orbit coupling included. As such, the results could provide a testing
ground of the accuracy of the PN expansion. Further, the spherical orbits could
provide useful initial data for numerical relativity. Finally, we comment that
the spinning black hole pairs should give way to chaos around the homoclinic
orbit when spin-spin coupling is incorporated.Comment: 16 pages, several figure
Ground state structure and interactions between dimeric 2D Wigner crystals
We study the ground state ordering and interactions between two
two-dimensional Wigner crystals on neutralizing charged plates by means of
computer simulation. We consider crystals formed by (i) point-like charges and
(ii) charged dimers, which mimic the screening of charged surfaces by elongated
multivalent ions such as aspherical globular proteins, charged dendrimers or
short stiff polyelectrolytes. Both systems, with point-like and dimeric ions,
display five distinct crystalline phases on increasing the interlayer distance.
In addition to alteration of translational ordering within the bilayer, the
phase transitions in the dimeric system are characterized by alteration of
orientational ordering of the ions.Comment: Revised versio
Kinetic Inflation in Stringy and Other Cosmologies
An inflationary epoch driven by the kinetic energy density in a dynamical
Planck mass is studied. In the conformally related Einstein frame it is easiest
to see the demands of successful inflation cannot be satisfied by kinetic
inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle
is manifest as a kind of graceful exit problem and/or a kind of flatness
problem. These arguments indicate the weakness of only the simplest
formulation. {}From them can be gleaned directions toward successful kinetic
inflation.Comment: 26 pages, LaTeX, CITA-94-2
Dynamics of Black Hole Pairs I: Periodic Tables
Although the orbits of comparable mass, spinning black holes seem to defy
simple decoding, we find a means to decipher all such orbits. The dynamics is
complicated by extreme perihelion precession compounded by spin-induced
precession. We are able to quantitatively define and describe the fully three
dimensional motion of comparable mass binaries with one black hole spinning and
expose an underlying simplicity. To do so, we untangle the dynamics by
capturing the motion in the orbital plane. Our results are twofold: (1) We
derive highly simplified equations of motion in a non-orthogonal orbital basis,
and (2) we define a complete taxonomy for fully three-dimensional orbits. More
than just a naming system, the taxonomy provides unambiguous and quantitative
descriptions of the orbits, including a determination of the zoom-whirliness of
any given orbit. Through a correspondence with the rationals, we are able to
show that zoom-whirl behavior is prevalent in comparable mass binaries in the
strong-field regime. A first significant conclusion that can be drawn from this
analysis is that all generic orbits in the final stages of inspiral under
gravitational radiation losses are characterized by precessing clovers with few
leaves and that no orbit will behave like the tightly precessing ellipse of
Mercury. The gravitational waveform produced by these low-leaf clovers will
reflect the natural harmonics of the orbital basis -- harmonics that,
importantly, depend only on radius. The significance for gravitational wave
astronomy will depend on the number of windings the pair executes in the
strong-field regime and could be more conspicuous for intermediate mass pairs
than for stellar mass pairs.Comment: 19 pages, lots of figure
Distinguishing Marks of Simply-connected Universes
A statistical quantity suitable for distinguishing simply-connected
Robertson-Walker (RW) universes is introduced, and its explicit expressions for
the three possible classes of simply-connected RW universes with an uniform
distribution of matter are determined. Graphs of the distinguishing mark for
each class of RW universes are presented and analyzed.There sprout from our
results an improvement on the procedure to extract the topological signature of
multiply-connected RW universes, and a refined understanding of that
topological signature of these universes studied in previous works.Comment: 13 pages, 4 figures, LaTeX2e. To appear in Int. J. Mod. Phys. D
(2000
Message and time efficient multi-broadcast schemes
We consider message and time efficient broadcasting and multi-broadcasting in
wireless ad-hoc networks, where a subset of nodes, each with a unique rumor,
wish to broadcast their rumors to all destinations while minimizing the total
number of transmissions and total time until all rumors arrive to their
destination. Under centralized settings, we introduce a novel approximation
algorithm that provides almost optimal results with respect to the number of
transmissions and total time, separately. Later on, we show how to efficiently
implement this algorithm under distributed settings, where the nodes have only
local information about their surroundings. In addition, we show multiple
approximation techniques based on the network collision detection capabilities
and explain how to calibrate the algorithms' parameters to produce optimal
results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459
The JPL isolated application experiment series
A set of small (approximately 60-150 kWe) solar thermal power experiments, each of which is meant to address a separate isolated load application, will employ point focusing distributed receiver technology with emphasis on electric and possibly some thermal power applications. The program will be closely integrated with the technology development element of the thermal power systems project with the objective of utilizing the technologies being developed under that program
Rapid Assembly of the Salvileucalin B Norcaradiene Core
Preparation of the polycyclic core of the cytotoxic natural product salvileucalin B is described. The key feature of this synthetic strategy is a copper-catalyzed intramolecular arene cyclopropanation to provide the central norcaradiene. These studies lay the foundation for continued investigations toward an enantioselective total synthesis of 1
- …
