3,405 research outputs found

    Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection.

    Get PDF
    The detection and analysis of proteins in a label-free manner under native solution conditions is an increasingly important objective in analytical bioscience platform development. Common approaches to detect native proteins in solution often require specific labels to enhance sensitivity. Dry mass sensing approaches, by contrast, using mechanical resonators, can operate in a label-free manner and offer attractive sensitivity. However, such approaches typically suffer from a lack of analyte selectivity as the interface between standard protein separation techniques and micro-resonator platforms is often constrained by qualitative mechanical sensor performance in the liquid phase. Here, we describe a strategy that overcomes this limitation by coupling liquid chromatography with a quartz crystal microbalance (QCM) platform by using a microfluidic spray dryer. We explore a strategy which allows first to separate a protein mixture in a physiological buffer solution using size exclusion chromatography, permitting specific protein fractions to be selected, desalted, and subsequently spray-dried onto the QCM for absolute mass analysis. By establishing a continuous flow interface between the chromatography column and the spray device via a flow splitter, simultaneous protein mass detection and sample fractionation is achieved, with sensitivity down to a 100 μg/mL limit of detection. This approach for quantitative label-free protein mixture analysis offers the potential for detection of protein species under physiological conditions.ERC EPSRC Frances and Augustus Newman Foundation Oppenheimer Early Career Fellowship Nanotechnologies Doctoral Training Centre Fluidic Analytics Lt

    Cost-effectiveness analysis of 3-D computerized tomography colonography versus optical colonoscopy for imaging symptomatic gastroenterology patients.

    No full text
    BACKGROUND: When symptomatic gastroenterology patients have an indication for colonic imaging, clinicians have a choice between optical colonoscopy (OC) and computerized tomography colonography with three-dimensional reconstruction (3-D CTC). 3-D CTC provides a minimally invasive and rapid evaluation of the entire colon, and it can be an efficient modality for diagnosing symptoms. It allows for a more targeted use of OC, which is associated with a higher risk of major adverse events and higher procedural costs. A case can be made for 3-D CTC as a primary test for colonic imaging followed if necessary by targeted therapeutic OC; however, the relative long-term costs and benefits of introducing 3-D CTC as a first-line investigation are unknown. AIM: The aim of this study was to assess the cost effectiveness of 3-D CTC versus OC for colonic imaging of symptomatic gastroenterology patients in the UK NHS. METHODS: We used a Markov model to follow a cohort of 100,000 symptomatic gastroenterology patients, aged 50 years or older, and estimate the expected lifetime outcomes, life years (LYs) and quality-adjusted life years (QALYs), and costs (£, 2010-2011) associated with 3-D CTC and OC. Sensitivity analyses were performed to assess the robustness of the base-case cost-effectiveness results to variation in input parameters and methodological assumptions. RESULTS: 3D-CTC provided a similar number of LYs (7.737 vs 7.739) and QALYs (7.013 vs 7.018) per individual compared with OC, and it was associated with substantially lower mean costs per patient (£467 vs £583), leading to a positive incremental net benefit. After accounting for the overall uncertainty, the probability of 3-D CTC being cost effective was around 60 %, at typical willingness-to-pay values of £20,000-£30,000 per QALY gained. CONCLUSION: 3-D CTC is a cost-saving and cost-effective option for colonic imaging of symptomatic gastroenterology patients compared with OC

    Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy

    Get PDF
    Thirty-nine Type 1 (insulin-dependent) diabetic patients were studied prospectively after simultaneous pancreas and kidney (n=26) and kidney grafting alone (n=13) by measuring heart rate variation during various manoeuvers and answering a standardized questionnaire every 6 to 12 months post-transplant. While age, duration of diabetes, and serum creatinine (168.1±35.4 vs 132.7±17.7 mgrmol/l) were comparable, haemoglobin A1 levels were significantly lower (6.6±0.2 vs 8.5±0.3%; p<0.01) and the mean observation time longer (35±2 vs 25±3 months; p<0.05) in the pancreas recipients when compared with kidney transplanted patients. Heart rate variation during deep breathing, lying/standing and Valsalva manoeuver were very similar in both groups initially and did not improve during follow-up. However, there was a significant reduction in heart rate in the pancreas recipient group. Autonomic symptoms of the gastrointestinal and thermoregulatory system improved more in the pancreas grafted subjects, while hypoglycaemia unawareness deteriorated in the kidney recipients. This study suggests that long-term normoglycaemia by successful pancreatic grafting is able to halt the progression of autonomic dysfunction

    Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.

    Get PDF
    Nanostructures composed of short, noncyclic peptides represent a growing field of research in nanotechnology due to their ease of production, often remarkable material properties, and biocompatibility. Such structures have so far been almost exclusively obtained through self-assembly from aqueous solution, and their morphologies are determined by the interactions between building blocks as well as interactions between building blocks and water. Using the diphenylalanine system, we demonstrate here that, in order to achieve structural and morphological control, a change in the solvent environment represents a simple and convenient alternative strategy to the chemical modification of the building blocks. Diphenylalanine (FF) is a dipeptide capable of self-assembly in aqueous solution into needle-like hollow micro- and nanocrystals with continuous nanoscale channels that possess advantageous properties such as high stiffness and piezoelectricity and have so emerged as attractive candidates for functional nanomaterials. We investigate systematically the solubility of diphenylalanine in a range of organic solvents and probe the role of the solvent in the kinetics of self-assembly and the structures of the final materials. Finally, we report the crystal structure of the FF peptide in microcrystalline form grown from MeOH solution at 1 Å resolution and discuss the structural changes relative to the conventional materials self-assembled in aqueous solution. These findings provide a significant expansion of the structures and morphologies that are accessible through FF self-assembly for existing and future nanotechnological applications of this peptide. Solvent mediation of molecular recognition and self-association processes represents an important route to the design of new supramolecular architectures deriving their functionality from the nanoscale ordering of their components.We thank the Newman Foundation (T.O.M., T.P.J.K.), the FEBS and the Tel Aviv University Center for Nanoscience and Nanotechnology (A.L.), the BBSRC (T.P.J.K.), and the Leverhulme Trust and Magdalene College (A.K.B.) for financial support. A.L. thanks Or Berger for his assistance with the HR-SEM imaging. The X-ray diffraction data collection experiments were performed in the crystallographic X-ray facility at the Department of Biochemistry, University of Cambridge. The authors thank Pavel Afonin for help with PHENIX software suite in the refinement of the structures.This is the accepted manuscript for a paper published in ACS Nano, 2014, 8 (2), pp 1243–1253 DOI: 10.1021/nn404237f , Publication Date (Web): January 14, 201

    Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition.

    Get PDF
    Membrane-less organelles resulting from liquid-liquid phase separation of biopolymers into intracellular condensates control essential biological functions, including messenger RNA processing, cell signalling and embryogenesis1-4. It has recently been discovered that several such protein condensates can undergo a further irreversible phase transition, forming solid nanoscale aggregates associated with neurodegenerative disease5-7. While the irreversible gelation of protein condensates is generally related to malfunction and disease, one case where the liquid-to-solid transition of protein condensates is functional, however, is that of silk spinning8,9. The formation of silk fibrils is largely driven by shear, yet it is not known what factors control the pathological gelation of functional condensates. Here we demonstrate that four proteins and one peptide system, with no function associated with fibre formation, have a strong propensity to undergo a liquid-to-solid transition when exposed to even low levels of mechanical shear once present in their liquid-liquid phase separated form. Using microfluidics to control the application of shear, we generated fibres from single-protein condensates and characterized their structural and material properties as a function of shear stress. Our results reveal generic backbone-backbone hydrogen bonding constraints as a determining factor in governing this transition. These observations suggest that shear can play an important role in the irreversible liquid-to-solid transition of protein condensates, shed light on the role of physical factors in driving this transition in protein aggregation-related diseases and open a new route towards artificial shear responsive biomaterials

    Comparative Developmental Neurotoxicity of Organophosphate Insecticides: Effects on Brain Development Are Separable from Systemic Toxicity

    Get PDF
    A comparative approach to the differences between systemic toxicity and developmental neurotoxicity of organophosphates is critical to determine the degree to which multiple mechanisms of toxicity carry across different members of this class of insecticides. We contrasted neuritic outgrowth and cholinergic synaptic development in neonatal rats given different organophosphates (chlorpyrifos, diazinon, parathion) at doses spanning the threshold for impaired growth and viability. Animals were treated daily on postnatal days 1–4 by subcutaneous injection so as to bypass differences in first-pass activation to the oxon or catabolism to inactive products. Evaluations occurred on day 5. Parathion (maximum tolerated dose, 0.1 mg/kg) was far more systemically toxic than was chlorpyrifos or diazinon (maximum tolerated dose, 1–5 mg/kg). Below the maximum tolerated dose, diazinon impaired neuritic outgrowth in the forebrain and brainstem, evidenced by a deficit in the ratio of membrane protein to total protein. Diazinon also decreased choline acetyltransferase activity, a cholinergic neuronal marker, whereas it did not affect hemicholinium-3 binding to the presynaptic choline transporter, an index of cholinergic neuronal activity. There was no m(2)-muscarinic acetylcholine receptor down-regulation, as would have occurred with chronic cholinergic hyper-stimulation. The same pattern was found previously for chlorpyrifos. In contrast, parathion did not elicit any of these changes at its maximum tolerated dose. These results indicate a complete dichotomy between the systemic toxicity of organophosphates and their propensity to elicit developmental neurotoxicity. For parathion, the threshold for lethality lies below that necessary for adverse effects on brain development, whereas the opposite is true for chlorpyrifos and diazinon

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD
    corecore