877 research outputs found

    Quantum limits and symphotonic states in free-mass gravitational-wave antennae

    Get PDF
    Quantum mechanics sets severe limits on the sensitivity and required circulating energy in traditional free-mass gravitational-wave antennas. One possible way to avoid these restrictions is the use of intracavity QND measurements. We analyze a new QND observable, which possesses a number of features that make it a promising candidate for such measurements and propose a practical scheme for the realization of this measurement. In combination with an advanced coordinate meter, this scheme makes it possible to lower substantially the requirements on the circulating power.Comment: 21 pages, 2 figure

    Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae

    Full text link
    Thermodynamical fluctuations of temperature in mirrors of gravitational wave antennae are transformed through thermal expansion coefficient into additional noise. This source of noise, which may also be interpreted as fluctuations due to thermoelastic damping, may not be neglected and leads to the necessity to reexamine the choice of materials for the mirrors. Additional source of noise are fluctuations of the mirrors' surfaces caused by optical power absorbed in dielectrical reflective layers.Comment: 20 pages, 2 figure

    QCD analysis of first b cross section data at 1.96 TeV

    Full text link
    The first data on bottom quark production in p-pbar collisions at 1.96 TeV have recently been obtained by the CDF collaboration. These data probe the region of pt~0, providing a new invaluable input on the issue of the compatibility between next-to-leading-order (NLO) QCD and data. We reconsider the evaluation of the b cross section, in view of recent theoretical developments, and of the latest inputs on structure function fits. We show that the new CDF measurements are in good agreement with NLO QCD. If CDF preliminary data are confirmed, a long-standing discrepancy between NLO QCD predictions and hadron-collider data can be settled.Comment: 15 pages, 7 figures. This revision gives an expanded presentation of the results and corrects a mistake in fig 5. V3 updates some reference

    Survival probability of large rapidity gaps in QCD and N=4 SYM motivated model

    Full text link
    In this paper we present a self consistent theoretical approach for the calculation of the Survival Probability for central dijet production . These calculations are performed in a model of high energy soft interactions based on two ingredients:(i) the results of N=4 SYM, which at the moment is the only theory that is able to deal with a large coupling constant; and (ii) the required matching with high energy QCD. Assuming, in accordance with these prerequisites, that soft Pomeron intercept is rather large and the slope of the Pomeron trajectory is equal to zero, we derive analytical formulae that sum both enhanced and semi-enhanced diagrams for elastic and diffractive amplitudes. Using parameters obtained from a fit to the available experimental data, we calculate the Survival Probability for central dijet production at energies accessible at the LHC. The results presented here which include the contribution of semi-enhanced and net diagrams, are considerably larger than our previous estimates.Comment: 11 pages, 10 pictures in .eps file

    A QCD motivated model for soft interactions at high energies

    Full text link
    In this paper we develop an approach to soft scattering processes at high energies,which is based on two mechanisms: Good-Walker mechanism for low mass diffractionand multi-Pomeron interactions for high mass diffraction. The pricipal idea, that allows us to specify the theory for Pomeron interactions, is that the so called soft processes occur at rather short distances (r^2 \propto 1 /^2 \propto \alpha'_\pom \approx 0.01 GeV^{-2}), where perturbative QCD is valid. The value of the Pomeron slope \alpha'_\pom was obtained from the fit to experimental data. Using this theoretical approach we suggest a model that fits all soft data in the ISR-Tevatron energy range, the total, elastic, single and double diffractive cross sections, including tt dependence of the differential elastic cross section, and the mass dependence of single diffraction. In this model we calculate the survival probability of diffractive Higgs production, and obtained a value for this observable, which is smaller than 1% at the LHC energy range.Comment: 33pp,20 figures in eps file

    Thermodynamics of Electrolytes on Anisotropic Lattices

    Full text link
    The phase behavior of ionic fluids on simple cubic and tetragonal (anisotropic) lattices has been studied by grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and continuous-space 1/r1/r electrostatic interactions have been investigated. At all degrees of anisotropy, only coexistence between a disordered low-density phase and an ordered high-density phase with the structure similar to ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to be monotonously increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electrolyte to be Ttri=0.14T^*_{tri}=0.14 and ρtri=0.70\rho^*_{tri} = 0.70.Comment: submitted to PR

    Determinantal process starting from an orthogonal symmetry is a Pfaffian process

    Full text link
    When the number of particles NN is finite, the noncolliding Brownian motion (BM) and the noncolliding squared Bessel process with index ν>1\nu > -1 (BESQ(ν)^{(\nu)}) are determinantal processes for arbitrary fixed initial configurations. In the present paper we prove that, if initial configurations are distributed with orthogonal symmetry, they are Pfaffian processes in the sense that any multitime correlation functions are expressed by Pfaffians. The 2×22 \times 2 skew-symmetric matrix-valued correlation kernels of the Pfaffians processes are explicitly obtained by the equivalence between the noncolliding BM and an appropriate dilatation of a time reversal of the temporally inhomogeneous version of noncolliding BM with finite duration in which all particles start from the origin, Nδ0N \delta_0, and by the equivalence between the noncolliding BESQ(ν)^{(\nu)} and that of the noncolliding squared generalized meander starting from Nδ0N \delta_0.Comment: v2: AMS-LaTeX, 17 pages, no figure, corrections made for publication in J.Stat.Phy

    Two parton shower background for associate W Higgs production

    Full text link
    The estimates of the background for the associate W Higgs production, which stems from the two parton shower production. It is about 1 - 2.5 times larger than the signal. However, this background does not depend on the rapidity difference between the W and the bbˉb \bar{b} pair, while the signal peaks when the rapidity difference is zero. The detailed calculations for the enhanced diagrams' contribution to this process, are presented, and it is shown that the overlapping singularities, being important theoretically, lead to a negligible contribution for the LHC range of energiesComment: 35 pages and 10 figures in eps file

    Noncolliding Squared Bessel Processes

    Full text link
    We consider a particle system of the squared Bessel processes with index ν>1\nu > -1 conditioned never to collide with each other, in which if 1<ν<0-1 < \nu < 0 the origin is assumed to be reflecting. When the number of particles is finite, we prove for any fixed initial configuration that this noncolliding diffusion process is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel called the correlation kernel. When the number of particles is infinite, we give sufficient conditions for initial configurations so that the system is well defined. There the process with an infinite number of particles is determinantal and the correlation kernel is expressed using an entire function represented by the Weierstrass canonical product, whose zeros on the positive part of the real axis are given by the particle-positions in the initial configuration. From the class of infinite-particle initial configurations satisfying our conditions, we report one example in detail, which is a fixed configuration such that every point of the square of positive zero of the Bessel function JνJ_{\nu} is occupied by one particle. The process starting from this initial configuration shows a relaxation phenomenon converging to the stationary process, which is determinantal with the extended Bessel kernel, in the long-term limit.Comment: v3: LaTeX2e, 26 pages, no figure, corrections made for publication in J. Stat. Phy

    Combinatorial Markov chains on linear extensions

    Full text link
    We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extensions of a finite poset of size n. This gives rise to a strongly connected graph on L. By assigning weights to the edges of the graph in two different ways, we study two Markov chains, both of which are irreducible. The stationary state of one gives rise to the uniform distribution, whereas the weights of the stationary state of the other has a nice product formula. This generalizes results by Hendricks on the Tsetlin library, which corresponds to the case when the poset is the anti-chain and hence L=S_n is the full symmetric group. We also provide explicit eigenvalues of the transition matrix in general when the poset is a rooted forest. This is shown by proving that the associated monoid is R-trivial and then using Steinberg's extension of Brown's theory for Markov chains on left regular bands to R-trivial monoids.Comment: 35 pages, more examples of promotion, rephrased the main theorems in terms of discrete time Markov chain
    corecore