1,049 research outputs found

    Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN International and GAIN Americas studies

    Get PDF
    <p><b>Background and Purpose:</b> Glycine Antagonist in Neuroprotection (GAIN) International and GAIN Americas trials were prospectively designed, randomized, placebo-controlled trials of gavestinel, a glycine-site antagonist and putative neuroprotectant drug administered within 6 hours of suspected ischemic or hemorrhagic stroke. Both trials reported that gavestinel was ineffective in ischemic stroke. This analysis reports the results in those with primary intracerebral hemorrhage.</p> <p><b>Methods:</b> The primary hypothesis was that gavestinel treatment did not alter outcome, measured at 3 months by the Barthel Index (BI), from acute intracerebral hemorrhage, based on pooled results from both trials. The BI scores were divided into 3 groups: 95 to 100 (independent), 60 to 90 (assisted independence), and 0 to 55 (dependent) or dead.</p> <p><b>Results:</b> In total, 3450 patients were randomized in GAIN International (N=1804) and GAIN Americas (N=1646). Of these, 571 were ultimately identified to have spontaneous intracerebral hematoma on baseline head computerized tomography scan. The difference in distribution of trichotomized BI scores at 3 months between gavestinel and placebo was not statistically significant (P=0.09). Serious adverse events were reported at similar rates in the 2 treatment groups.</p> <p><b>Conclusions:</b> These observations from the combined GAIN International and GAIN Americas trials suggest that gavestinel is not of substantial benefit or harm to patients with primary intracerebral hemorrhage. These findings are similar to results previously reported in patients with ischemic stroke.</p&gt

    Gold as an inflation hedge?

    Get PDF
    This paper attempts to reconcile an apparent contradiction between short-run and long-run movements in the price of gold. The theoretical model suggests a set of conditions under which the price of gold rises over time at the general rate of inflation and hence be an effective hedge against inflation. The model also demonstrates that short-run changes in the gold lease rate, the real interest rate, convenience yield, default risk, the covariance of gold returns with other assets and the dollar/world exchange rate can disturb this equilibrium relationship and generate short-run price volatility. Using monthly gold price data (1976-1999), and cointegration regression techniques, an empirical analysis confirms the central hypotheses of the theoretical model

    1/f Noise in Electron Glasses

    Full text link
    We show that 1/f noise is produced in a 3D electron glass by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures. The low frequency noise spectrum goes as \omega^{-\alpha} with \alpha slightly larger than 1. This result together with the temperature dependence of \alpha and the noise amplitude are in good agreement with the recent experiments. These results hold true both with a flat, noninteracting density of states and with a density of states that includes Coulomb interactions. In the latter case, the density of states has a Coulomb gap that fills in with increasing temperature. For a large Coulomb gap width, this density of states gives a dc conductivity with a hopping exponent of approximately 0.75 which has been observed in recent experiments. For a small Coulomb gap width, the hopping exponent approximately 0.5.Comment: 8 pages, Latex, 6 encapsulated postscript figures, to be published in Phys. Rev.

    Condensation of Hard Spheres Under Gravity: Exact Results in One Dimension

    Full text link
    We present exact results for the density profile of the one dimensional array of N hard spheres of diameter D and mass m under gravity g. For a strictly one dimensional system, the liquid-solid transition occurs at zero temperature, because the close-pakced density, ϕc\phi_c, is one. However, if we relax this condition slightly such that phic=1δphi_c=1-\delta, we find a series of critical temperatures T_c^i=mgD(N+1-i)/\mu_o with \mu_o=const, at which the i-th particle undergoes the liquid-solid transition. The functional form of the onset temperature, T_c^1=mgDN/\mu_o, is consistent with the previous result [Physica A 271, 192 (1999)] obtained by the Enskog equation. We also show that the increase in the center of mass is linear in T before the transition, but it becomes quadratic in T after the transition because of the formation of solid near the bottom

    Inducing Hidden Markov Models to Model Long-Term Dependencies

    Full text link

    Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets

    Full text link
    The electrical transport properties of amorphous Bi films prepared by sequential quench deposition have been studied in situ. A superconductor-insulator (S-I) transition was observed as the film was made increasingly thicker, consistent with previous studies. Unexpected behavior was found at the initial stage of film growth, a regime not explored in detail prior to the present work. As the temperature was lowered, a positive temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance reaching a minimum before the dR/dT became negative again. This behavior was accompanied by a non-linear and asymmetric I-V characteristic. As the film became thicker, conventional variable-range hopping (VRH) was recovered. We attribute the observed crossover in the electrical transport properties to an amorphous to granular structural transition. The positive dR/dT found in the amorphous phase of Bi formed at the initial stage of film growth was qualitatively explained by the formation of metallic droplets within the electron glass.Comment: 7 pages, 6 figure

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    PYTHIA 6.4 Physics and Manual

    Full text link
    The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further information may be found on the PYTHIA web page: http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly deleted section heading for "Physics Processes" reinserted, affecting section numbering. Minor updates to take into account referee comments and new colour reconnection option

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
    corecore