18 research outputs found
Rapid Assembly of the Salvileucalin B Norcaradiene Core
Preparation of the polycyclic core of the cytotoxic natural product salvileucalin B is described. The key feature of this synthetic strategy is a copper-catalyzed intramolecular arene cyclopropanation to provide the central norcaradiene. These studies lay the foundation for continued investigations toward an enantioselective total synthesis of 1
Enantioselective Total Synthesis of (+)-Salvileucalin B
An enantioselective total synthesis of the diterpenoid natural product (+)-salvileucalin B is reported. Key findings include a
copper-catalyzed arene cyclopropanation reaction to provide the unusual
norcaradiene core and a reversible retro-Claisen rearrangement of a
highly functionalized norcaradiene intermediate
Explicit solution for vibrating bar with viscous boundaries and internal damper
We investigate longitudinal vibrations of a bar subjected to viscous boundary
conditions at each end, and an internal damper at an arbitrary point along the
bar's length. The system is described by four independent parameters and
exhibits a variety of behaviors including rigid motion, super
stability/instability and zero damping. The solution is obtained by applying
the Laplace transform to the equation of motion and computing the Green's
function of the transformed problem. This leads to an unconventional
eigenvalue-like problem with the spectral variable in the boundary conditions.
The eigenmodes of the problem are necessarily complex-valued and are not
orthogonal in the usual inner product. Nonetheless, in generic cases we obtain
an explicit eigenmode expansion for the response of the bar to initial
conditions and external force. For some special values of parameters the system
of eigenmodes may become incomplete, or no non-trivial eigenmodes may exist at
all. We thoroughly analyze physical and mathematical reasons for this behavior
and explicitly identify the corresponding parameter values. In particular, when
no eigenmodes exist, we obtain closed form solutions. Theoretical analysis is
complemented by numerical simulations, and analytic solutions are compared to
computations using finite elements.Comment: 29 pages, 6 figure
Buchner and Beyond: Arene Cyclopropanation as Applied to Natural Product Total Synthesis
Buchner and Curtius first reported the cyclopropanation of arenes in 1885. Since the initial discovery, the Buchner reaction has been the subject of significant research by both physical and synthetic organic chemists. Described herein is a brief overview of the Buchner reaction and related arene cyclopropanation processes, with an emphasis on their application to natural product total synthesis
A cationic cysteine-hydrazide as an enrichment tool for the mass spectrometric characterization of bacterial free oligosaccharides
In Campylobacterales and related Δ-proteobacteria with N-linked glycosylation (NLG) pathways, free oligosaccharides (fOS) are released into the periplasmic space from lipid-linked precursors by the bacterial oligosaccharyltransferase (PglB). This hydrolysis results in the same molecular structure as the oligosaccharide that is transferred to a protein to be glycosylated. This allowed for the general elucidation of the fOS-branched structures and monosaccharides from a number of species using standard enrichment and mass spectrometry methods. To aid characterization of fOS, hydrazide chemistry has often been used for chemical modification of the reducing part of oligosaccharides resulting in better selectivity and sensitivity in mass spectrometry; however, the removal of the unreacted reagents used for the modification often causes the loss of the sample. Here, we develop a more robust method for fOS purification and characterize glycostructures using complementary tandem mass spectrometry (MS/MS) analysis. A cationic cysteine hydrazide derivative was synthesized to selectively isolate fOS from periplasmic fractions of bacteria. The cysteine hydrazide nicotinamide (Cyhn) probe possesses both thiol and cationic moieties. The former enables reversible conjugation to a thiol-activated solid support, while the latter improves the ionization signal during MS analysis. This enrichment was validated on the well-studied Campylobacter jejuni by identifying fOS from the periplasmic extracts. Using complementary MS/MS analysis, we approximated data of a known structure of the fOS from Campylobacter concisus. This versatile enrichment technique allows for the exploration of a diversity of protein glycosylation pathways
A gravitational-wave standard siren measurement of the Hubble constant
On 17 August 2017, the Advanced LIGO 1 and Virgo 2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system 3 . Less than two seconds after the merger, a Îł-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source 4-6 . This sky region was subsequently observed by optical astronomy facilities 7 , resulting in the identification 8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' 14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder' 19 : the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements 20,21 , while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision
A gravitational-wave standard siren measurement of the Hubble constant
The detection of GW170817 (ref. 1) heralds the age of gravitational-wave multi-messenger astronomy, with the observations of gravitational-wave and electromagnetic emission from the same transient source. On 17 August 2017 the network of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)2 and Virgo3 detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a Îł-ray burst event, GRB 170817A, was detected consistent with the LIGOâVirgo sky localization region4â6). The sky region was subsequently observed by optical astronomy facilities7, resulting in the identification of an optical transient signal within about 10 arcseconds of the galaxy NGC 4993 (refs 8â13). GW170817 can be used as a standard siren14â18, combining the distance inferred purely from the gravitational-wave signal with the recession velocity arising from the electromagnetic data to determine the Hubble constant. This quantity, representing the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurements do not require any form of cosmic âdistance ladderâ19; the gravitational-wave analysis directly estimates the luminosity distance out to cosmological scales. Here we report H0 = kilometres per second per megaparsec, which is consistent with existing measurements20,21, while being completely independent of them
Scalable Regioselective Synthesis of Rhodamine Dyes
A one-step, operationally
simple protocol for the synthesis of
isomerically pure rhodamine dyes from phthalaldehydic acids is reported.
Using a mixture of 2,2,2-trifluoroethanol and water as reaction media
allows for clean and efficient formation of various rhodamines as
a single isomer. This method was successfully applied to the synthesis
of several isomerically pure rhodamines, including 6-carboxytetraÂmethylÂrhodamine
and 6-carboxy-X-rhodamine (6-CXR) on gram scale. A simple, one-step,
Pd-catalyzed hydroxyÂcarbonylation approach to phthalaldehydic
acids from appropriately substituted dihaloÂbenzadehydes is also
described
Luminogenic HiBiT peptide-based NanoBRET ligand binding assays for melatonin receptors
The two human melatonin receptors MT and MT , which belong to the G protein-coupled receptor (GPCR) family, are important drug targets with approved indications for circadian rhythm- and sleep-related disorders and major depression. Currently, most of the pharmacological studies were performed using [ H]melatonin and 2-[ I]iodomelatonin (2-[ I]-MLT) radioligands. Recently, NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a sensitive, nonradioactive alternative for quantifying GPCR ligand engagement on the surface of living cells in equilibrium and real time. However, developing such assays for the two melatonin receptors depends on the availability of fluorescent tracers, which has been challenging predominantly owing to their narrow ligand entry channel and small ligand binding pocket. Here, we generated a set of melatonergic fluorescent tracers and used NanoBRET to evaluate their engagement with MT and MT receptors that are genetically fused to an N-terminal luminogenic HiBiT-peptide. We identified several nonselective and subtype-selective tracers. Among the selective tracers, PBI-8238 exhibited high nanomolar affinity to MT , and PBI-8192 exhibited low nanomolar affinity to MT . The pharmacological profiles of both tracers were in good agreement with those obtained with the current standard 2-[ I]-MLT radioligand. Molecular docking and mutagenesis studies suggested the binding mode of PBI-8192 in MT and its selectivity over MT . In conclusion, we describe the development of the first nonradioactive, real-time binding assays for melatonin receptors expressed at the cell surface of living cells that are likely to accelerate drug discovery for melatonin receptors. [Abstract copyright: © 2022 American Chemical Society.