1,732 research outputs found

    Flow Measurements Using Particle Image Velocimetry in the Ultra Compact Combustor

    Get PDF
    Velocity measurements were performed using the Particle Image Velocimetry (PIV) technique on the Ultra Compact Combustor (UCC) test rig at the Air Force Institute of Technology (AFIT). Velocity patterns and time-averaged turbulence statistics were calculated for data taken with the UCC burning hydrogen fuel in the straight cavity vane and curved cavity vane configurations. The equivalence ratio was varied from 0.7 to 1.5, while the ratio of cavity air to main air was varied from 5% to 20% in testing performed on the straight vane configuration. Spanwise velocity was observed to decrease linearly with distance from the cavity vane over the width of the main channel, but spanwise turbulence intensity penetrated into less than 50% of the main channel for all conditions except the most fuel rich (φ=1.5) suggesting more rich conditions may prove better for both mixing and operability. A velocity effect study was performed in the curved and straight cavity vane configuration by increasing the flow rates, but holding the equivalence ratio and ratio of cavity to main air flow rates constant. Relative turbulence intensities were found to be independent of overall flow velocity in the straight configuration, while a negative correlation was observed in the curved configuration. Overall turbulence intensity levels were measured at 15% and 21% of the main channel velocity for the straight and curved configurations respectively. The highest average turbulence intensities were observed near the cross-flow of the cavity vane, and peak turbulence was observed just over the Radial Vane Cavity (RVC). The RVC was observed to generate flow rotation. Peak vorticity was observed farthest from the cavity vane suggesting the angle of the RVC is effective in generating increasing flow rotation with streamwise velocity

    Photoassociation dynamics in a Bose-Einstein condensate

    Full text link
    A dynamical many body theory of single color photoassociation in a Bose-Einstein condensate is presented. The theory describes the time evolution of a condensed atomic ensemble under the influence of an arbitrarily varying near resonant laser pulse, which strongly modifies the binary scattering properties. In particular, when considering situations with rapid variations and high light intensities the approach described in this article leads, in a consistent way, beyond standard mean field techniques. This allows to address the question of limits to the photoassociation rate due to many body effects which has caused extensive discussions in the recent past. Both, the possible loss rate of condensate atoms and the amount of stable ground state molecules achievable within a certain time are found to be stronger limited than according to mean field theory. By systematically treating the dynamics of the connected Green's function for pair correlations the resonantly driven population of the excited molecular state as well as scattering into the continuum of non-condensed atomic states are taken into account. A detailed analysis of the low energy stationary scattering properties of two atoms modified by the near resonant photoassociation laser, in particular of the dressed state spectrum of the relative motion prepares for the analysis of the many body dynamics. The consequences of the finite lifetime of the resonantly coupled bound state are discussed in the two body as well as in the many body context. Extending the two body description to scattering in a tight trap reveals the modifications to the near resonant adiabatic dressed levels caused by the decay of the excited molecular state.Comment: 27 pages revtex, 16 figure

    Mesons and Flavor on the Conifold

    Get PDF
    We explore the addition of fundamental matter to the Klebanov-Witten field theory. We add probe D7-branes to the N=1{\cal N}=1 theory obtained from placing D3-branes at the tip of the conifold and compute the meson spectrum for the scalar mesons. In the UV limit of massless quarks we find the exact dimensions of the associated operators, which exhibit a simple scaling in the large-charge limit. For the case of massive quarks we compute the spectrum of scalar mesons numerically.Comment: 19 pages, 3 figures, v2: typos fixe

    Flow Measurements Using Particle Image Velocimetry in the Ultracompact Combustor

    Get PDF
    The potential for the ultracompact combustor (UCC) lie in future research to reduced fuel consumption and improved engine performance. Velocity measurements performed on the UCC test rig at the Air Force Institute of Technology revealed flow patterns and time-averaged turbulence statistics for data taken burning hydrogen fuel in a straight and a curved cavity vane configuration. Over an equivalence ratio from 0.7 to 1.5, the straight vane configuration showed spanwise velocity decreased linearly with distance from the cavity vane over the width of the main channel. Increasing the flow rates and holding the equivalence ratio and ratio of cavity to main airflow rates constant, flow velocities in the main channel showed an increase with the curved circumferential configuration but a decrease with the straight circumferential configuration. Turbulence intensity is expected to be a major contributing factor, specifically since measured at 15% and 21% in the main channel for the straight and curved configurations, respectively. The results also show how the radial vane cavity (RVC) created strong vorticity throughout the main flow supporting a recirculation zone for mixing. Peak vorticity occurred farthest from the cavity vane suggesting the angle of the radial vane cavity is effective in generating increasing flow rotation

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl

    Mutational load may predict risk of progression in patients with Barrett\u27s oesophagus and indefinite for dysplasia: A pilot study

    Get PDF
    © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. Background and aims Mutational load (ML) has been shown to help risk-stratify those that may progress from non-dysplastic Barrett\u27s oesophagus (BE) to dysplastic disease. Management of patients with BE and indefinite for dysplasia (BE-IND) is challenging and risk stratification tools are lacking. The aim of this pilot study is to evaluate the utility of ML for risk stratification in patients with BE-IND. Methods This is a single-centre, retrospective pilot study evaluating ML quantification in patients with BE-IND. Histology at follow-up endoscopy at least 1 year after the baseline endoscopy was used to determine if a patient progressed to low or high dysplasia. The ML levels were then compared among patients who progressed to dysplasia versus those who did not. Results Thirty-five patients who met the inclusion criteria were identified, and seven met the exclusion criteria. Twenty-eight patients were analysed, of whom eight progressed to low-grade dysplasia (6) and high-grade dysplasia (2). Seven of these eight patients had some level of genomic instability detected in their IND biopsy (ML ≥0.5). Ten of the 20 (50%) who did not progress had no ML level. At an ML cut-off above 1.5, the risk of progression to high-grade dysplasia was 33% vs 0% (p=0.005), with a sensitivity of 100% and a specificity of 85%. Conclusion These results indicate that ML may be able to risk-stratify progression to high-grade dysplasia in BE-IND. Larger studies are needed to confirm these findings

    Bubble, Bubble, Flow and Hubble: Large Scale Galaxy Flow from Cosmological Bubble Collisions

    Full text link
    We study large scale structure in the cosmology of Coleman-de Luccia bubble collisions. Within a set of controlled approximations we calculate the effects on galaxy motion seen from inside a bubble which has undergone such a collision. We find that generically bubble collisions lead to a coherent bulk flow of galaxies on some part of our sky, the details of which depend on the initial conditions of the collision and redshift to the galaxy in question. With other parameters held fixed the effects weaken as the amount of inflation inside our bubble grows, but can produce measurable flows past the number of efolds required to solve the flatness and horizon problems.Comment: 30 pages, 8 figures, pdftex, minor corrections and references adde

    Seamless Bead to Microarray Screening: Rapid Identification of the Highest Affinity Protein Ligands from Large Combinatorial Libraries

    Get PDF
    SummarySeveral approaches have been developed for screening combinatorial libraries or collections of synthetic molecules for agonists or antagonists of protein function, each with its own advantages and limitations. In this report, we describe an experimental platform that seamlessly couples massively parallel bead-based screening of one-bead one-compound combinatorial libraries with microarray-based quantitative comparisons of the binding affinities of the many hits isolated from the bead library. Combined with other technical improvements, this technique allows the rapid identification of the best protein ligands in combinatorial libraries containing millions of compounds without the need for labor-intensive resynthesis of the hits

    Hyperdeterminants as integrable discrete systems

    Full text link
    We give the basic definitions and some theoretical results about hyperdeterminants, introduced by A. Cayley in 1845. We prove integrability (understood as 4d-consistency) of a nonlinear difference equation defined by the 2x2x2-hyperdeterminant. This result gives rise to the following hypothesis: the difference equations defined by hyperdeterminants of any size are integrable. We show that this hypothesis already fails in the case of the 2x2x2x2-hyperdeterminant.Comment: Standard LaTeX, 11 pages. v2: corrected a small misprint in the abstrac
    • …
    corecore