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Mesons and Flavor on the Conifold

Abstract
We explore the addition of fundamental matter to the Klebanov-Witten field theory. We add probe D7- branes
to the N = 1 theory obtained from placing D3-branes at the tip of the conifold and compute the meson
spectrum for the scalar mesons. In the UV limit of massless quarks we find the exact dimensions of the
associated operators, which exhibit a simple scaling in the large-charge limit. For the case of massive quarks we
compute the spectrum of scalar mesons numerically.
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We explore the addition of fundamental matter to the Klebanov-Witten field theory. We add probe D7-
branes to the N � 1 theory obtained from placing D3-branes at the tip of the conifold and compute the
meson spectrum for the scalar mesons. In the UV limit of massless quarks we find the exact dimensions of
the associated operators, which exhibit a simple scaling in the large-charge limit. For the case of massive
quarks we compute the spectrum of scalar mesons numerically.
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I. INTRODUCTION

The gauge theory/string theory correspondence [1–3]
furnishes a powerful set of tools for understanding gauge
theories at strong coupling by performing computations in
a dual string theory at weak coupling. However, the corre-
spondence is only well understood in systems where the
string background is highly symmetric and nearly flat, but
we expect that the duals to many interesting gauge theories
(such as large-N QCD or SQCD) will not have these
properties. It is therefore an interesting challenge to study
less symmetric string backgrounds, and, in particular, to
study backgrounds with reduced supersymmetry.

One interesting class of models arises from compactifi-
cations of string theory on noncompact Calabi-Yau mani-
folds with D3-branes at conical singularities, which
generically give rise to N � 1 gauge theories with prod-
uct gauge groups and bifundamental matter. These models
are attractive for several reasons. They possess minimal
supersymmetry and are therefore closer to realistic gauge
theories than the well-studied N � 4 case; also, they lead
to conformal field theories where the quantum conformal
invariance is not obvious by inspection of the field theory
(but where the supergravity dual makes conformal invari-
ance manifest.) Perhaps the most striking feature of these
theories is that one can break conformal invariance in a
controlled way by adding fluxes through cycles of the
Calabi-Yau geometry, which induce renormalization group
(RG) flow and confinement at low energies.

However, one missing element of these models is fun-
damental matter. Aside from being experimentally impor-
tant, fundamentals give rise to many interesting things such
as the phase structure of super-Yang-Mills theory in the
infrared. In confining theories the fundamentals of course
do not appear as asymptotic states but are instead confined
in mesons and baryons.

In this paper we study the mesonic fluctuations of a
particular set of mesons in the conifold theory of

Klebanov and Witten [4]. This theory is interesting for its
relative simplicity and also because its nonconformal ver-
sion flows to a theory very similar to N � 1 pure glue
theory in the infrared. Moreover all metrics for the corre-
sponding supergravity solutions are known, allowing ex-
plicit computations. The mesons which we study arise as
fluctuations on D7-branes which are embedded in the
string background. The fundamental fields come from
strings connecting the stack of D3-branes to the D7-branes.
In the usual decoupling limit, the 3-7 strings and 3-3
strings, which describe the gauge theory, have a dual
description in terms of the closed strings and 7-7 strings.
The closed strings are the usual glueballs of the strongly
coupled field theory while the open 7-7 strings are natu-
rally identified with the mesons.

We will compute the spectrum of operator dimensions,
which, as we will see, can be done exactly for a large
portion of the states, and we will study the effect of giving
masses to the quarks (which requires numerical work).

The paper is organized as follows. In Sec. II we review
the geometry of the conifold. In Sec. III we discuss adding
flavor to the Klebanov-Witten field theory by the addition
of probe D7-branes. In Sec. IV we compute the spectrum
for scalar mesons. In the case of massive quarks, we
compute the mass spectrum numerically, but in the mass-
less case (corresponding to the UV limit of the gauge
theory) we obtain the spectrum analytically. In Sec. V we
discuss our results.

II. REVIEW OF THE CONIFOLD

In this section we briefly review the geometry of the
conifold in order to fix notation. Useful references are [4–
9].

The conifold is a noncompact Calabi-Yau threefold,
defined by the equation

 z1z2 � z3z4 � 0 (1)

in C4. Because Eq. (1) is invariant under an overall real
rescaling of the coordinates, this space is a cone, whose
base is the Einstein space T1;1 [4,5]. The metric on the
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conifold may be cast in the form [5]

 ds2
6 � dr2 � r2ds2

T1;1 ; (2)

where
 

ds2
T1;1 �

1

9

�
d �

X2

i�1

cos�id�i

�
2

�
1

6

X2

i�1

�d�2
i � sin2�id�2

i � (3)

is the metric on T1;1. Here  is an angular coordinate which
ranges from 0 to 4�, while ��1; �1� and ��2; �2� parame-
trize two S2s in the standard way. This form of the metric
shows that T1;1 is a U�1� bundle over S2 � S2.

These angular coordinates are related to the zi variables
by

 z1 � r3=2ei=2� ��1��2� sin
�1

2
sin
�2

2
;

z2 � r3=2ei=2� ��1��2� cos
�1

2
cos

�2

2
;

z3 � r3=2ei=2� ��1��2� cos
�1

2
sin
�2

2
;

z4 � r3=2ei=2� ��1��2� sin
�1

2
cos

�2

2
:

(4)

It is also sometimes helpful to consider a set of ‘‘homoge-
neous’’ coordinates Aa, Bb where a, b � 1, 2, in terms of
which the zi are

 z1 � A1B1; z2 � A2B2; (5)

 z3 � A1B2; z4 � A2B1: (6)

With this parametrization the zi obviously solve the defin-
ing equation of the conifold.

We may also parametrize the conifold in terms of an
alternative set of complex variables wi, given by

 z1 � w1 � iw2; z2 � w1 � iw2;

z3 � �w3 � iw4; z4 � w3 � iw4:
(7)

The conifold equation may now be written as

 

X
w2
i � 0 (8)

and we identify the T1;1 base of the cone as the intersection
of the conifold with the surface

 

X
jwij

2 � r3: (9)

T1;1 described in this way is explicitly invariant under
SO�4� ’ SU�2� � SU�2� rotations of the wi coordinates
and under an overall phase rotation. Thus the symmetry
group of T1;1 is SU�2� � SU�2� �U�1�.

An important fact about T1;1 is that it has Betti numbers
b2, b3 � 1. The corresponding two-cycle and three-cycle
may be expressed in terms of harmonic differential forms:

 !2 �
1
2��11 ��22�; (10)

 !3 � � ^!2: (11)

In this paper we will consider D7-branes in the model of
Klebanov and Witten [4]. This model is a particularly
simple N � 1 gauge/gravity dual, obtained by placing a
stack of N D3-branes near a conifold singularity. The
branes source the Ramond-Ramond (RR) 5-form flux and
warp the geometry:

 ds2
10 � h�r��1=2dx�dx

� � h�r�1=2�dr2 � r2ds2
T1;1�; (12)

 h�r� � 1�
L4

r4 ; (13)

 gsF5 � d4x ^ dh�1 � ?�d4x ^ dh�1�; (14)

 L4 � 27
4�gsN�

02: (15)

Hereafter, we specialize to the near-horizon limit r=L�
1, and set L � 1 for convenience. It may be easily restored
by dimensional analysis at any point.

The dual field theory has gauge group SU�N� � SU�N�
and matter fields A1;2, B1;2 which transform in the bifun-
damental color representations �N; �N�c and � �N;N�c. The
theory also has a superpotential

 W � �Tr�AiBjAkBl��ik�jl: (16)

By solving the F-term equations for this superpotential, we
obtain supersymmetric vacua for arbitrary diagonal A1;2

and B1;2, so that the moduli space of the field theory is
precisely that of N D3-branes placed on the conifold.

III. ADDING FLAVOR

In this section we review the procedure of adding flavor
branes to AdS/CFT in general and make several useful
comments on adding flavor to the Klebanov-Witten field
theory both in terms of the bulk geometry and the dual field
theory. This general procedure was first pointed out in [10–
12] and was exploited in the AdS5 � S5 case in [13]. Some
other examples of flavored theories with probe branes have
been studied in [14–26].

One way to add flavor to AdS/CFT is to take a system of
D3-branes and then to add D7-branes which fill the four x�

directions and four of the six transverse dimensions [11]. In
flat space such a configuration of branes is clearly super-
symmetric. As usual there is an N � 4 SU�N� SYM
theory living on the D3-branes. Strings with one end on a
D3-brane and one end on a D7-brane couple to the fields of
the D3-brane gauge theory as quarks.
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For AdS/CFT purposes we can now take the supergrav-
ity approximation in which D3-branes are replaced by an
AdS5 � S5 geometry with Ramond-Ramond flux, while we
retain the D7-branes as probes which fill the five AdS
directions and which wrap a topologically trivial 3-cycle
of the internal 5-manifold (for example an S3 submanifold
of the S5 of AdS5 � S

5). The triviality of the 3-cycle
guarantees that the brane carries no net charge and will
not introduce any tadpoles. On the other hand, topological
triviality also suggests that one might be able to shrink the
S3 and slip it off of the S5, naively in contradiction with the
flat space picture of D3 and D7-branes. It turns out that
subtleties of the AdS geometry play a key role in ensuring
stability. The mass eigenvalues of modes controlling the D-
brane slipping off the 3-cycle are negative, but are above
the Breitenlohner-Freedman bound [27], so that the 7-
brane embedding is stable.

In the flat space picture, if the D3-branes and D7-branes
intersect then the quarks are massless, and if the D3-branes
and D7-branes are separated then the quarks are massive.
This translates nicely into the AdS picture in the following
way. A D7-brane which intersects the D3-branes in flat
space gets mapped to a D7-brane which fills the whole AdS
space and wraps a three-sphere of constant size in the S5.
On the other hand, a D7-brane separated from the stack of
D3-branes maps to a D7-brane which wraps an S3 with
some asymptotic size at large AdS radius, but this S3

shrinks to zero size at some finite radius (which is possible
because of the topological triviality). In the 5-dimensional
AdS space the D7-brane appears to fill out the radial
direction up to some minimal radius where it ‘‘ends.’’

It is interesting of course to consider theories with
branes in spaces which are not flat. The basic picture of
D3 and D7 branes contributing gauge fields and quarks will
not change, but many details are different. For simplicity
throughout this paper we specialize to the case of a single
D7-brane. If the number of D3-branes is large then the D7
backreaction can be systematically neglected and it is
appropriate to treat the D7-brane as a probe, which we
do throughout this paper. Inclusion of backreaction effects
in other geometries has been explored in [10,28,29].

Let us consider D7-branes embedded in the geometry of
the conifold by the equation z1 � �. In terms of the
standard coordinate system,

 z1 � r3=2ei=2� ��1��2� sin
�1

2
sin
�2

2

so the embedding equation gives two conditions, one on
the magnitude of z1 and one on the phase:

 r0 �

�
j�j

sin�1

2 sin�2

2

�
2=3
; (17)

  0 � �1 ��2 � const: (18)

This embedding can be explicitly shown to be supersym-

metric by considering the 	-symmetry on the world vol-
ume of the brane [30]. A slightly different embedding
equation was studied in the warped deformed conifold by
[31].

It was proposed in [32] that the embedding z1 � � leads
to fields, summarized in Table I and a superpotential of the
form

 W � Wflavors �Wmasses; (19)

 Wflavors � h~qA1Q� gqB1
~Q;

Wmasses � �1q~q��2Q ~Q:
(20)

To relate this superpotential to the D7-brane geometry, let
us probe the space with a single D3-brane, which corre-
sponds to giving some expectation values to A1 and B1.
One then finds that the theory on this probe has a massless
flavor when A1B1 � �1�2=�gh�, which is exactly of the
form of the embedding equation z1 � �. Part of the mo-
tivation for this superpotential was a comparison with a
type IIA brane construction [33] where a D6-brane splits
on an NS5-brane, contributing two flavor branes and cor-
respondingly two sets of flavors. For the type IIB picture,
in the massless limit of the field theory, this corresponds
nicely to the presence of two solution branches of z1 � 0,
namely �1 � 0 and �2 � 0. If the quarks are massless there
is an SU�K� � SU�K� flavor symmetry, where K is the
number of probe D7-branes. If the quarks are massive then
the two branches of the D7-branes connect and the flavor
symmetry is broken down to the diagonal SU�K�.

An alternative perspective is to suppose that one of the
masses�i is larger than the other and then integrate out the
associated flavors. Then one obtains a quartic superpoten-
tial of the form

 W � q�A1B1 ���~q (21)

which again produces the appropriate massless locus for a
D3-brane probe. Our probe calculations will show that this
quartic superpotential is consistent with adding D7-branes
with massive flavors (and then with the limit where we take
the masses to zero.) Of course, because we believe the
quarks can be massive the consistency was virtually guar-
anteed. However, taking the limit �! 0 and setting � �
0 are different things, and it is unclear whether the theory
corresponding to the cubic superpotential can be realized
or not.

TABLE I. Representation structure of the added N � 1 fla-
vors.

Field SU�Nc� � SU�Nc� SU�K� � SU�K�

q �N; 1� �K; 1�
~q � �N; 1� �1;K�
Q �1;N� �1; �K�
~Q �1; �N� � �K; 1�
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IV. SCALAR MESONS

In this section, we compute the dimension and mass
spectra of the scalar mesons. As discussed in the introduc-
tion, in the probe and decoupling limits the 7-7 strings are
identified with the mesons in the dual field theory. We will
thus be able to extract the mass spectrum of the spin � 0
mesons and their conformal dimension in the UV limit by
studying the 7-7 strings.

The semiclassical dynamics of this D7-brane are cap-
tured by the Dirac-Born-Infeld action
 

SDBI � 
7

Z
d8�

�����������������������������������������������������������
�det

ij
�gMN � FMN�

@yM

@�i
@yN

@�j

s

�
gs
7

2

Z
C4 ^ F2 ^ F2; (22)

where �i are coordinates on the D7-brane. We will com-
pute the spectrum of fluctuations for the D7-branes using
this action.

Let us consider the fluctuations of scalar modes alone,
with all D7-brane gauge fields turned off. Then the DBI
action is simply the world volume of the 7-brane. Let us
choose as coordinates on the brane eight of the spacetime
coordinates: �x�; �1; �2; �1; �2�. The fluctuations can be
described by setting

 r � r0��i��1� ��x�; �i; �j��; (23)

  �  0��i� � 3�x�; �i; �j�: (24)

The unperturbed induced metric takes the form

 gMN �
r2

0�� 0 0
0 g�i�j 0
0 0 g�i�j

0B@
1CA; (25)

 g�i�j �
1
6�

1
9 cot2 �1

2
1
9 cot�1

2 cot�2

2
1
9 cot�1

2 cot�2

2
1
6�

1
9 cot2 �2

2

 !
; (26)

 

g�i�j
�

1
6sin2�1�

1
9�1�cos�1�

2 1
9�1�cos�1��1�cos�2�

1
9�1�cos�1��1�cos�2�

1
6sin2�2�

1
9�1�cos�2�

2

 !
:

(27)

One expands about this metric via the matrix identity
 �����������������������

detA� �A
p

�
����������
detA
p

�1� 1
2 TrA�1�A� 1

8�TrA�1�A�2

� 1
4 TrA�1�AA�1�A� . . .�: (28)

The terms first order in the fluctuations � and  turn out to
be total derivatives, as is necessary for our embedding to be
a solution of the equations of motion. The quadratic order
fluctuations lead to an action of the form

 

S � 
7

Z
d4xd�1d�2d�1d�2

������������
detg0

p 1

C

�
1

2
gab0 @a�@b�

�
1

2
gab0 @a@b�

4

sin2 �2

2

�@�2
�

2

Csin2 �2

2

�

�
cot
�1

2
@�1
� cot

�2

2
@�2

�
�@�2

�
4

sin2 �1

2

�@�1


�
2

Csin2 �1

2

�
cot
�1

2
@�1
� cot

�2

2
@�2

�
�@�1


�

(29)

with

 C � 1�
2

3
cot2 �1

2
�

2

3
cot2 �2

2
: (30)

A. The UV/massless limit

One interesting issue to explore is the spectrum of
dimensions of the mesonic operators in the UV field theory.
Taking this high-energy limit, we may consistently ignore
the masses of the quarks in comparison with the energy
scale of the field theory. In the gravity dual, this high-
energy limit corresponds to computing near the boundary
of AdS, and taking the limit �! 0.

Examining (17) we see that there are two ways to go
near the boundary: �1 ! 0 or �2 ! 0. Which one we
choose will determine which side of the conifold we are
on near the boundary. In the current setup, the physics is
symmetric between exchange of �1 and �2 so we will
simply choose the �1 ! 0 limit. We can compute the
dimensions of the operators in the field theory by examin-
ing the scaling of the 7-7 strings near the boundary.

We define r0 � �2=3e��=3 (now a good coordinate be-
cause of the conformal invariance), and cos2 �2

2 � x.
Defining the linear combination of fields

 �� � �� i (31)

we find that the equations for �� are two fully decoupled
partial differential equations. This equation is solved by a
separation of variables ansatz

 �� � ���x�ek�=3eim1�1�im2�2 : (32)

The equations of motion for the scalar reduce to ordinary
differential equations for the functions ��x�� which take
the form
 �
�1� x�

@
@x
x
@
@x
�

1

6
k�k� 1� �

m2
1

8

3� x
1� x

�
m1m2

2�1� x�

�
1

4

m2
2

x�1� x�
	
m1

4

1� x
1� x

�
m2

2�1� x�

�
���x� � 0: (33)

This equation has singularities only at x � 0; 1;1 and is
therefore of hypergeometric type. To see this explicitly we
define new functions by rescaling the �� by factors of x
and (1� x), which allow us to remove the terms in (33)
proportional to 1

x and 1
1�x . Explicitly, we write
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 ���x� � xp�1� x�qf��x� (34)

for which the equation of motion becomes
 �
x�1� x�

@2

@x2 � �1� 2p� x�1� 2p� 2q��
@
@x

�
�q2 � q� 1

4�
1
4 �m1 �m2 � 1�2�

1� x
�
�p2 �

m2
2

4 �

x

�
1

6
k�k� 1� �

1

4

�
m2

1

2
	m1

�
� �p� q�2

�
f��x� � 0:

(35)

Appropriate choice of the parameters p and q eliminates
the terms proportional to 1=x and 1=�1� x�. The wave
functions are given by

 f��x� � 2F1���;�� 2�p� q�; 1� 2p; x� (36)

which are regular when � is a non-negative integer; it turns
out that the original � are also regular with this condition
over the range 0 
 x 
 1 (0 
 �2 
 �) which encom-
passes our domain. We also find that there are two possible
values of k:

 k1 �
1
2�

1
2

������������������������������������������������������������������������
1� 3m2

1 	 6m1 � 24��� p� q�2
q

; (37)

 k2 �
1
2�

1
2

������������������������������������������������������������������������
1� 3m2

1 	 6m1 � 24��� p� q�2
q

: (38)

To be painfully explicit, we exhibit the solutions for f�

(the f� are straightforwardly related). It is clear that there
are always two choices of p and q which do the trick; to
make regularity transparent we will always choose p and q
to be positive. We then have four cases:

(i) m2 � 0, m1 � m2: We choose p � m2=2 and q �
1� 1

2 �m1 �m2�, so that f� � 2F1���; 2�m1 �

�; 1�m2; x�. The wave function is regular if � is
a non-negative integer (negative � gives irregular or
redundant solutions) and so the two values of k are
quantized to be

 k �
1

2
�

1

2

����������������������������������������������������������������������������
1� 3m2

1 � 6m1 � 24
�
��

m1

2
� 1

�
2

s
:

(39)

(ii) m2 � 0, m1 <m2: Again we choose p � m2=2, but
now to make regularity obvious we take q � �m2 �
m1�=2, such that q > 0. Now f� � 2F1���; 2m2 �
m1 � �; 1�m2; x�, again with � a non-negative
integer. The quantized values of k are

 k �
1

2
�

1

2

��������������������������������������������������������������������������������
1� 3m2

1 � 6m1 � 24
�
��m2 �

m1

2

�
2

s
:

(40)

(iii) m2 < 0, m1 � m2: Now we choose p � �m2=2 and

q�1� 1
2�m1�m2�, finding that f�� 2F1���;2�

m1�2m2��;1�m2;x�, with � a non-negative in-
teger. The allowed values of k are

 k�
1

2
�

1

2

����������������������������������������������������������������������������������
1�3m2

1�6m1�24
�
��

m1

2
�m2�1

�
2

s
:

(41)

(iv) m2 < 0, m1 <m2: Now we choose p � �m2=2 and
q � �m2 �m1�=2, finding that f� � 2F1���;��
m1; 1�m2; x�, with � a non-negative integer. The
allowed values of k are

 k �
1

2
�

1

2

�������������������������������������������������������������������
1� 3m2

1 � 6m1 � 24
�
��

m1

2

�
2

s
: (42)

To find the dimensions of the operators, we recall that
ek�=3 � r�k. In the AdS/CFT correspondence a minimal
massless scalar field dual to an operator of dimension �
scales as r�� for its normalizable part and r��4 for its non-
normalizable part. However, by examining (29) we see that
the kinetic terms for these scalars are not canonically
normalized, which means that the possible scalings at
infinity are modified to r���p and r��4�p for some p.
Using the values for k1 and k2 we have 2�� 4 � k1 � k2,
which one can compute straightforwardly.

The dimensions are mostly complicated irrational num-
bers (reminiscent of the closed string spectrum on T1;1

[8,34]) but a few features of the spectrum stand out. The
lowest mode has m1 � m2 � � � 0, and is simply a con-
stant; it can be assigned dimension 5=2 or 3=2. From the
earlier discussion of the massive field theory, it is natural to
choose dimension 3=2 and associate this mode with the
operator q~q. Note also that the mode with m1 � m2 � 1
and � � 0 has dimension 3, appropriate for a superpoten-
tial term—we identify this mode with the operator
qA2B2 ~q. If added to the superpotential, this operator would
change the D7-brane embedding from z1 � � to z1 �
�z2 � �.

For large m1, all the dimensions scale as �� 3m1=2.
This is consistent with identification of the corresponding
gauge theory operators as

 q�AB��AB� . . . �AB�~q; (43)

where, ignoring the q fields, each insertion of (AB) should
increase the dimension by 3=2 and the relevant SU�2�
charge (associated with m1) by one unit. Unlike the case
of baryonic operators on the conifold, where one finds an
exact scaling �� 3N=4 [35], we see that the mesons only
exhibit a simple scaling with the charge in a large-charge
limit. For small charges there are boundary effects due to
the quarks which, at least in the large-N limit, are com-
pletely calculable here. This behavior should also be con-
trasted with the case of flavors added to N � 4 super-YM
theory, where the meson dimensions were pure integers.
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If we take instead the limit of large �, we see that the
dimensions scale as ��

���
6
p
�. It would be interesting to

find an explanation for this curious scaling in the field
theory.

B. The mass spectra

Having obtained the conformal dimensions for the me-
sons in the conformal limit, we would like to compute their
spectrum by solving the full differential equation without
taking any simplifying limits. Unfortunately, we will find
that the equation is not amenable to analytic solution and
so we will have to appeal to numerical methods. We will
display selected results from several cases that are illus-
trative of the general behavior.

We will again find that the linear combination of fields
(31) decouples the equations of motion. Rewriting the
action (29) in terms of �� and varying gives
 

1����������
�g0
p @a

�
1

C
����������
�g0
p

gab0 @b��
�

� 3i
�

1����������
�g0
p @�i�

����������
�g0
p

��i�j� � ��j

�
@�j

�� � 0; (44)

where the a, b indices run over the x� and the �1;2, �1;2,
and

 ��i�j �
4�1� cos�j�

C2sin2�j
@�i lnr0��i; �j�; (45)

 ��j �
8�1� cos�j�

3Csin2�j
: (46)

The inverse components of the metric are straightforward
to find from the form given in (25)–(27). Since @x� and @�i

are Killing vectors we can write

 �� �  ���1; �2�e
ikxeim1�1�im2�2 : (47)

We find that (44) becomes
 

�@�i

�
1

C
����������
�g0
p

g
�i�j
0 @�j 

�

�
�

1

C
����������
�g0
p

g
�i�j

0 mimj 
�

� 3�@�i�
����������
�g0
p

��i�j� �
����������
�g0
p

��j�mj 
�

� �

����������
�g0
p

Cr2
0��1; �2�

k2 �: (48)

Note that for massive modes k2 � k�k� < 0 since it must
be timelike. Using simple Kaluza-Klein arguments we see
that the mass of the mesons in the dual field theory isM2 �
�k2. It is evident from the form of this equation that the
only difference between the equation for  � and for  � is
in a term proportional to mj. Thus, we can choose to solve
for  � without loss of generality. This equation cannot be
solved analytically. In addition, we have found no simple
way to separate the equation in the �1, �2 directions and so

we must use a numerical approach to solving the partial
differential equation.

The numerical approach

Although the equations we would like to solve are linear,
the lack of separability forces us to seek a numerical
solution. The equations are elliptic, which allows us to
use finite-element analysis and the Arnoldi algorithm as
implemented in the PDE Toolbox of Matlab to solve for the
mass eigenvalues, �k2. (It is worth noting that the method
of lines used by Mathematica’s NDSolve cannot be used
for elliptic PDEs.) We will use a mesh with 2779 nodes and
5392 triangles for all problems involved. The �is range
from 0 to�. Because we already know �i ! 0 corresponds
to going near the boundary, and we want normalizable
modes, we place Dirichlet boundary conditions at �1;2 �
0. We must also demand regularity at �1;2 � �, which
corresponds to placing Neumann boundary conditions at
�1;2 � �.

We will first examine the simplest case, when m1 �

m2 � 0. Setting ��4=3 � :02 we solve (48) for the first
50 eigenvalues. The eigenvalues break up into different
series corresponding to the number of nodes in the ��1; �2�
plane. In Figs. 1 and 2 we display the first two such series.
Higher series have similar behavior. The � signs denote
actual mass eigenvalues, while the solid lines are best-fit
lines.

We will also find similar behavior for modes withm1;2 �

0. In Fig. 3 we display the zero node modes for the case
m1 � 1, m2 � 2 with ��4=3 � 2 (note: changing � just
changes the eigenvalues by an overall scaling, as expected
since it merely scales the mass gap for the quarks). We find
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5

6
x 10

4

−k2

FIG. 1. Mass eigenvalues versus eigenvalue number for the
zero node modes with m1 � m2 � 0, ��4=3 � :02. �s denote
actual eigenvalues and the solid line is a best-fit line with
equation �k2 � 240n2 � 68n� 290. The masses are measured
in units given by the inverse AdS radius.
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similar behavior for other values of m1;2 and different
number of nodes.

For all the cases we see that in the large n limit we have
M� n�2=3 as we would expect. Restoring L by dimen-

sional analysis, and using mq �
�2=3

2��0 we find the mass gap
for the lightest meson is

 Mgap �
mq���������
gsN
p : (49)

Therefore, in the supergravity regime where gsN � 1 we
find the meson mass is much smaller than the quark mass.

At large t’Hooft coupling we find that the binding energy
of the mesons almost completely cancels the rest energy of
the quarks. This is similar to the situation in AdS5 � S5

[13].

V. DISCUSSION

In this paper we have computed the spectrum of mesons
in an N � 1 field theory corresponding to fluctuations in
the position of a holomorphically embedded D7-brane. In
the limit of nearly massless quarks, the field theory is
classically conformal, and also conformal at large-N, and
the spectrum turns out to be computable exactly, where the
dimensions in general are complicated irrationals.

There are a few operators for which the exact results are
simple. Among these are the lowest mode, corresponding
to a mass term, with dimension 3=2, and a mode corre-
sponding to a Bogomol’nyi-Prasad-Sommerfield (BPS)
fluctuation of the D7-brane, with dimension 3. The exis-
tence of these operators suggests that a consistent super-
potential for our flavored theory is

 W � qA1B1 ~q: (50)

It would be interesting to study the Klebanov-Strassler
theory [36] obtained at the end of the duality cascade
with the addition of 3-form flux with this superpotential.

In the strictly massless limit, z1 � 0, it is possible to
relax our embedding condition slightly. Specifically, with a
nonzero mass we imposed a relation between the azimuthal
coordinates,  ��1 ��2 � 0. However, when the mass
is zero this condition need not apply; it would be nice to see
what relaxing this condition would mean for the field
theory (in particular, whether it is possible to realize the
cubic superpotential discussed in Sec. III.)

The appearance of irrational dimensions is not surpris-
ing, in light of similar results for the glueball spectrum of
the conifold [8,34]. However, this feature of the meson
spectrum differs from the N � 4 case, where the meson
dimensions were pure integers. In particular, we do not find
a tower of states with spacing 3=2, except in the large R-
charge limit; more precisely, in this limit the spectrum is of
the form 3k=2�O�1=J�. It might be possible to compute
these 1=J corrections in a plane-wave limit, or perhaps in
some other formalism. It would be interesting if such a
comparison with our exact results were possible.

We have also numerically computed the spectrum for the
case of massive quarks. In the large gsN limit the meson
mass gap is significantly smaller than the quark masses. We
have uncovered a relatively simple quadratic scaling be-
havior for the meson masses. It would be nice to find, either
with analytical or more numerical work, the exact func-
tional dependence on n, m1, m2, etc.

0 2 4 6 8 10 12
0

1

2

3

4

5
x 10

4

−k2

FIG. 2. Mass eigenvalues versus eigenvalue number for the
one node modes with m1 � m2 � 0, ��4=3 � :02. �s denote
actual eigenvalues and the solid line is a best-fit line with
equation �k2 � 270n2 � 490n� 1500. The masses are mea-
sured in units given by the inverse AdS radius.
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FIG. 3. Mass eigenvalues versus eigenvalue number for the
zero node modes with m1 � 1, m2 � 2, ��4=3 � 2. �s denote
actual eigenvalues and the solid line is a best-fit line with
equation �k2 � 3:2n2 � 5:4n� 29. The masses are measured
in units given by the inverse AdS radius.
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All of our calculations have been in the probe limit and
further studies of the backreaction would be interesting,
especially for the Klebanov-Strassler deformed conifold
theory. However, it may still be possible to learn things
from further study of probe theories. In particular, it would
be interesting to study the dynamics of nontrivial classical
field configurations in the D7-brane world volume. Such
fields would correspond to dissolved D3-branes or anti-D3-
branes. The antibrane case is particularly interesting, as it
would break supersymmetry along the lines of the KKLT
scenario [37],1 but with the possibility for some moduli to
be fixed by the D7-brane. We leave these suggestions for
the future.
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