53 research outputs found

    Primary health care delivery models in rural and remote Australia – a systematic review

    Get PDF
    © 2008 Wakerman et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background One third of all Australians live outside of its major cities. Access to health services and health outcomes are generally poorer in rural and remote areas relative to metropolitan areas. In order to improve access to services, many new programs and models of service delivery have been trialled since the first National Rural Health Strategy in 1994. Inadequate evaluation of these initiatives has resulted in failure to garner knowledge, which would facilitate the establishment of evidence-based service models, sustain and systematise them over time and facilitate transfer of successful programs. This is the first study to systematically review the available published literature describing innovative models of comprehensive primary health care (PHC) in rural and remote Australia since the development of the first National Rural Health Strategy (1993–2006). The study aimed to describe what health service models were reported to work, where they worked and why. Methods A reference group of experts in rural health assisted in the development and implementation of the study. Peer-reviewed publications were identified from the relevant electronic databases. 'Grey' literature was identified pragmatically from works known to the researchers, reference lists and from relevant websites. Data were extracted and synthesised from papers meeting inclusion criteria. Results A total of 5391 abstracts were reviewed. Data were extracted finally from 76 'rural' and 17 'remote' papers. Synthesis of extracted data resulted in a typology of models with five broad groupings: discrete services, integrated services, comprehensive PHC, outreach models and virtual outreach models. Different model types assume prominence with increasing remoteness and decreasing population density. Whilst different models suit different locations, a number of 'environmental enablers' and 'essential service requirements' are common across all model types. Conclusion Synthesised data suggest that, moving away from Australian coastal population centres, sustainable models are able to address diseconomies of scale which result from large distances and small dispersed populations. Based on the service requirements and enablers derived from analysis of reported successful PHC service models, we have developed a conceptual framework that is particularly useful in underpinning the development of sustainable PHC models in rural and remote communities

    Somatic cell type specific gene transfer reveals a tumor-promoting function for p21Waf1/Cip1

    Get PDF
    How proteins participate in tumorigenesis can be obscured by their multifunctional nature. For example, depending on the cellular context, the cdk inhibitors can affect cell proliferation, cell motility, apoptosis, receptor tyrosine kinase signaling, and transcription. Thus, to determine how a protein contributes to tumorigenesis, we need to evaluate which functions are required in the developing tumor. Here we demonstrate that the RCAS/TvA system, originally developed to introduce oncogenes into somatic cells of mice, can be adapted to allow us to define the contribution that different functional domains make to tumor development. Studying the development of growth-factor-induced oligodendroglioma, we identified a critical role for the Cy elements in p21, and we showed that cyclin D1T286A, which accumulates in the nucleus of p21-deficient cells and binds to cdk4, could bypass the requirement for p21 during tumor development. These genetic results suggest that p21 acts through the cyclin D1–cdk4 complex to support tumor growth, and establish the utility of using a somatic cell modeling system for defining the contribution proteins make to tumor development

    The evolution of a highly variable sex chromosome in Gehyra purpurascens (Gekkonidae)

    Full text link
    A karyotypic survey of the gekkonid lizard Gehyra purpurascens revealed a distinctive sex chromosome system. G-banding showed that the Z Chromosome of males is derived from a tandem fusion of two acrocentric chromosomes of a presumed ancestral Gehyra with 2n=44. Through the application of G-; N- and C-banding, a total of six morphs of the W chromosome were identified. These differ by paracentric and pericentric inversions and, in one case, by a centric shift. The possible reasons for such extensive variation in the W chromosome are considered, and it is suggested that increased mutability of the W chromosome may be a causal factor. In contrast to earlier speculations, this example demonstrates that sex chromosomes can evolve without significant changes in the amount of C-band heterochromatin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47361/1/412_2004_Article_BF00292447.pd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Duplicated KOX zinc finger gene clusters flank the centromere of human chromosome 10: evidence for a pericentric inversion during primate evolution.

    No full text
    Two related zinc finger (ZNF) gene clusters from the pericentromeric region of human chromosome 10, defined by cDNAs of the KOX series, have been cloned in yeast artificial chromosomes (YACs). The two clusters evolved by duplication of an ancestral gene cluster before the divergence of the human and great ape lineages. Included in cluster A are the ZNF gene sequences ZNF11A, ZNF33A, and ZNF37A, while cluster B comprises the related sequences ZNF11B, ZNF33B and ZNF37B. Genes from both clusters are expressed: cDNAs KOX2, KOX31 and KOX21 derive from ZNF11B, ZNF33A and ZNF37A, respectively. Further YACs have been isolated which link ZNF11A and ZNF33A to another gene, ZNF25, defined by cDNA clone KOX19. Therefore ZNF25 also forms part of cluster A, but has no counterpart in cluster B. Surprisingly, the KOX ZNF gene clusters are located on opposite sides of the centromere: cluster A maps to 10p11.2, while cluster B is in 10q11.2. This suggests the occurrence during primate evolution of a previously undescribed pericentric inversion subsequent to the cluster duplication. The evolution of this subset of KOX ZNF genes has therefore involved three types of genetic event: local gene duplication, gene cluster duplication, and chromosome rearrangement
    • …
    corecore