49 research outputs found

    Compromising the Unfolded Protein Response Induces Autophagy-Mediated Cell Death in Multiple Myeloma Cells

    Get PDF
    OBJECTIVE: To determine whether the Unfolded Protein Response (UPR) sensors (PERK, ATF6 and IRE-1) can be targeted to promote death of Multiple Myeloma (MM) cells. METHODS: We have knocked-down separately each UPR stress sensor in human MM cell lines using RNA interference and followed MM cell death by monitoring the membrane, mitochondrial and nuclear alterations. Involvement of caspases in MM cell death consecutive to UPR sensor knock-down was analyzed by western blotting, measurement of their enzymatic activity using fluorigenic substrates and susceptibility to a pan-caspase inhibitor. Activation of the autophagic process was measured directly by detection of autophagosomes (electronic microscopy), monodansylcadaverine staining, production of the cleaved form of the microtubule-associated protein 1A/1B light chain 3 (LC3) and indirectly by analyzing the impact of pharmacological inhibitors of autophagy such as 3MA and bafilomycin A1. RESULTS: We show that extinction of a single UPR stress sensor (PERK) induces a non-apoptotic form of cell death in MM cells that requires autophagy for its execution. We also show that this cytotoxic autophagic process represses the apoptosis program by reducing the cytosolic release of the apoptogenic factors Smac/DIABLO and cytochrome c. INTERPRETATION: Altogether our findings suggest that autophagy can contribute to execution of death in mammalian cells that are exposed to mild ER stress. They also suggest that the autophagic process can regulate the intrinsic apoptotic pathway by inhibiting production of death effectors by the mitochondria, thus preventing formation of a functional apoptosome. Altogether these findings give credit to the idea that UPR sensors can be envisaged as therapeutic targets for the treatment of MM

    Phosphatidylserine (PS) induces PS receptor–mediated macropinocytosis and promotes clearance of apoptotic cells

    Get PDF
    Efficient phagocytosis of apoptotic cells is important for normal tissue development, homeostasis, and the resolution of inflammation. Although many receptors have been implicated in the clearance of apoptotic cells, the roles of these receptors in the engulfment process have not been well defined. We developed a novel system to distinguish between receptors involved in tethering of apoptotic cells versus those inducing their uptake. Our results suggest that regardless of the receptors engaged on the phagocyte, ingestion does not occur in the absence of phosphatidylserine (PS). Further, recognition of PS was found to be dependent on the presence of the PS receptor (PSR). Both PS and anti-PSR antibodies stimulated membrane ruffling, vesicle formation, and “bystander” uptake of cells bound to the surface of the phagocyte. We propose that the phagocytosis of apoptotic cells requires two events: tethering followed by PS-stimulated, PSR-mediated macropinocytosis

    Development of antigen cross-presentation capacity in dendritic cells

    Full text link
    Cross-presentation by dendritic cells (DCs) of exogenous antigens on MHC class I is important for the generation of immune responses to intracellular pathogens, as well as for maintenance of self tolerance. In mice, the CD8(+) DC lineage is specialised for this role. However, DCs of this lineage are not born with cross-presentation capacity. Several studies have demonstrated that it must be induced as a later developmental step by cytokines such as granulocyte macrophage colony-stimulating factor (GM-CSF), or by microbial products such as toll-like receptor (TLR) ligands. Increased cross-presentation capacity is thus induced in peripheral CD8 lineage DCs during inflammation or infection. However, this capacity is already fully developed in steady-state thymic CD8(+) DCs, in accordance with their role in the deletion of self-reactive developing T cells

    Overexpression of Sp1 transcription factor induces apoptosis.

    No full text
    International audienceTranscription factor Sp1 has recently been shown to be overexpressed in a number of human cancers and its overexpression contributes to malignant transformation. Sp1 regulates the expression of a number of genes participating in multiple aspects of tumorigenesis such as angiogenesis, cell growth and apoptosis resistance. To better understand the role of increased Sp1 levels on apoptosis regulation we have used retroviruses to overexpress this protein in haematopoietic Baf-3 cells and in 3T3 fibroblasts. We have also used inducible expression systems to control ectopic Sp1 levels in different cell types. Surprisingly, Sp1 overexpression on its own induces apoptosis in all the cellular models tested. The apoptotic pathways induced by Sp1 overexpression are cell type specific. Finally, using a truncated form of Sp1, we show that Sp1-induced apoptosis requires its DNA-binding domain. Our results highlight that Sp1 levels in untransformed cells must be tightly regulated as Sp1 overexpression leads to the induction of apoptosis. Our results also suggest that cancer cells overexpressing Sp1 can avoid Sp1-induced apoptosis

    Cutting Edge: The Wiskott-Aldrich Syndrome Protein Is Required for Efficient Phagocytosis of Apoptotic Cells

    No full text
    Phagocytosis of apoptotic cells by macrophages and dendritic cells is necessary for clearance of proinflammatory debris and for presentation of viral, tumor, and self Ags. While a number of receptors involved in the cognate recognition of apoptotic cells by phagocytes have been identified, the signaling events that result in internalization remain poorly understood. Here we demonstrate that clearance of apoptotic cells is accompanied by recruitment of the Wiskott-Aldrich syndrome (WAS) protein to the phagocytic cup and that it's absence results in delayed phagocytosis both in vitro and in vivo. Therefore, we propose that WAS protein plays an important and nonredundant role in the safe removal of apoptotic cells and that deficiency contributes significantly to the immune dysregulation of WAS. The efficiency of apoptotic cell clearance may be a key determinant in the suppression of tissue inflammation and prevention of autoimmunity
    corecore