7 research outputs found

    Mechanisms of nonlinear spin-wave emission from a microwave driven nanocontact

    Full text link
    We present a micromagnetic study of linear and nonlinear spin-wave modes excited in an extended permalloy thin film by a microwave driven nanocontact. We show that the linear mode having the frequency equal to the excitation frequency (f) is driven by the ac Oersted field component perpendicular to the static external field (applied in-plane of the sample). The nonlinear mode with the frequency f /2 is excited as an independent eigenmode within a parametric longitudinal pumping process (due ac Oersted field component parallel to the bias field). Spectral positions of those modes are determined both in the space and phase domain. The results are important for the transfer of information coded into spin-waves between nanocontacts, and for synchronization of spin transfer torque nano-oscillators.Comment: 5 pages, 4 figure

    Magnetic domain-wall motion by propagating spin waves

    Full text link
    We found by micromagnetic simulations that the motion of a transverse wall (TW) type domain wall in magnetic thin-film nanostripes can be manipulated via interaction with spin waves (SWs) propagating through the TW. The velocity of the TW motion can be controlled by changes of the frequency and amplitude of the propagating SWs. Moreover, the TW motion is efficiently driven by specific SW frequencies that coincide with the resonant frequencies of the local modes existing inside the TW structure. The use of propagating SWs, whose frequencies are tuned to those of the intrinsic TW modes, is an alternative approach for controlling TW motion in nanostripes

    A spin-wave frequency doubler by domain wall oscillation

    Full text link
    We present a new mechanism for spin-wave excitation using a pinned domain wall which is forced to oscillate at its eigenfrequency and radiates spin waves. The domain wall acts as a frequency doubler, as the excited spin waves have twice the frequency of the domain wall oscillation. The investigations have been carried out using micromagnetic simulations and enable the determination of the main characteristics of the excited spin-waves such as frequency, wavelength, and velocity. This behavior is understood by the oscillation in the perpendicular magnetization which shows two anti-nodes oscillating out of phase with respect to each other.Comment: 8 pages, 3 figure
    corecore