5 research outputs found

    Exploring Restart Distributions

    Get PDF
    We consider the generic approach of using an experience memory to help exploration by adapting a restart distribution. That is, given the capacity to reset the state with those corresponding to the agent's past observations, we help exploration by promoting faster state-space coverage via restarting the agent from a more diverse set of initial states, as well as allowing it to restart in states associated with significant past experiences. This approach is compatible with both on-policy and off-policy methods. However, a caveat is that altering the distribution of initial states could change the optimal policies when searching within a restricted class of policies. To reduce this unsought learning bias, we evaluate our approach in deep reinforcement learning which benefits from the high representational capacity of deep neural networks. We instantiate three variants of our approach, each inspired by an idea in the context of experience replay. Using these variants, we show that performance gains can be achieved, especially in hard exploration problems.Comment: RLDM 201

    Scaling All-Goals Updates in Reinforcement Learning Using Convolutional Neural Networks

    No full text
    Being able to reach any desired location in the environment can be a valuable asset for an agent. Learning a policy to navigate between all pairs of states individually is often not feasible. An all-goals updating algorithm uses each transition to learn Q-values towards all goals simultaneously and off-policy. However the expensive numerous updates in parallel limited the approach to small tabular cases so far. To tackle this problem we propose to use convolutional network architectures to generate Q-values and updates for a large number of goals at once. We demonstrate the accuracy and generalization qualities of the proposed method on randomly generated mazes and Sokoban puzzles. In the case of on-screen goal coordinates the resulting mapping from frames to distance-maps directly informs the agent about which places are reachable and in how many steps. As an example of application we show that replacing the random actions in ε-greedy exploration by several actions towards feasible goals generates better exploratory trajectories on Montezuma's Revenge and Super Mario All-Stars games
    corecore