12 research outputs found

    GABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans

    No full text
    Relapse of fear after successful treatment is a common phenomenon in patients with anxiety disorders. Animal research suggests that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a key role in the maintenance of extinguished fear. Here, we combined magnetic resonance spectroscopy and functional magnetic resonance imaging to investigate the role of GABA in fear recovery in 70 healthy male participants. We associated baseline GABA levels in the dorsal anterior cingulate cortex (dACC) to indices of fear recovery as defined by changes in skin conductance responses (SCRs), blood oxygen level dependent responses, and functional connectivity from fear extinction to fear retrieval. The results showed that high GABA levels were associated with increased SCRs, enhanced activation of the right amygdala, and reduced amygdala-ventromedial prefrontal cortex connectivity during fear recovery. Follow-up analyses exclusively for the extinction phase showed that high GABA levels were associated with reduced amygdala activation and enhanced amygdala-ventromedial prefrontal cortex connectivity, despite the absence of correlations between GABA and physiological responses. Follow-up analyses for the retrieval phase did not show any significant associations with GABA. Together, the association between GABA and increases in SCRs from extinction to retrieval, without associations during both phases separately, suggests that dACC GABA primarily inhibits the consolidation of fear extinction. In addition, the opposite effects of GABA on amygdala activity and connectivity during fear extinction compared to fear recovery suggest that dACC GABA may initially facilitate extinction learning

    Anterior cingulate GABA and glutamate concentrations are associated with resting-state network connectivity

    No full text
    In recent years, resting-state (RS) networks and RS function have received increased attention, highlighting their importance in both cognitive function and psychopathology. The neurochemical substrates underlying RS networks and their interactions, however, have not yet been well established. Even though prior research has provided first evidence for a negative association between brain GABA levels and RS connectivity, these findings have been limited to within network connectivity, and not network interactions. In this multi-modal imaging study, we investigated the role of the main inhibitory neurotransmitter У-aminobutyric acid (GABA) and the main excitatory neurotransmitter glutamate (Glx) on RS network function and network coupling of three core networks: the default-mode network (DMN), salience network (SN), and central executive network (CEN). Resting-state functional connectivity and GABA and Glx levels in the dorsal anterior cingulate cortex (dACC) were assessed in 64 healthy male participants using functional MRI and magnetic resonance spectroscopy (MRS). Analyses showed that dACC GABA levels were positively correlated with resting-state connectivity in the CEN, and negatively associated with functional coupling of the DMN and CEN. In contrast, GABA/Glx ratios were inversely correlated with the SN and DMN. These findings extend insights into the role of GABA and Glx in individual networks to interactions across networks, suggesting that GABA levels in the SN might play a role in RS functional connectivity within the central executive network, and network interactions with the default-mode network. Our results further suggest a potentially critical role of the relationship between GABA and Glx in RS network function

    Divergent influences of anterior cingulate cortex GABA concentrations on the emotion circuitry

    No full text
    Neuroimaging research has revealed that emotion processing recruits a widespread neural network including the dorsal anterior cingulate cortex (dACC), hippocampus, and amygdala. Recent studies have started to investigate the role of the primary inhibitory neurotransmitter gamma-aminobutyric acid (GABA) on brain function, but little is known about the influences of GABA on this emotion circuitry. Using magnetic resonance spectroscopy, we investigated the role of GABA levels in the dACC on emotion processing by presenting emotional and neutral pictures to 68 healthy male participants during functional magnetic resonance imaging. Results revealed opposing associations of dACC GABA levels and neural activity. GABA levels were positively correlated with blood oxygen level dependent (BOLD) responses to emotional stimuli in the amygdala and to emotional and neutral stimuli in the hippocampus. In contrast, GABA levels were negatively correlated with BOLD responses for the comparison between positive and negative stimuli in the dACC. Our results suggest positive influences of dACC GABA on BOLD responses in the hippocampus and amygdala, and negative influences on BOLD responses in the dACC that are dependent on emotional valenc

    GABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans

    No full text
    Relapse of fear after successful treatment is a common phenomenon in patients with anxiety disorders. Animal research suggests that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a key role in the maintenance of extinguished fear. Here, we combined magnetic resonance spectroscopy and functional magnetic resonance imaging to investigate the role of GABA in fear recovery in 70 healthy male participants. We associated baseline GABA levels in the dorsal anterior cingulate cortex (dACC) to indices of fear recovery as defined by changes in skin conductance responses (SCRs), blood oxygen level dependent responses, and functional connectivity from fear extinction to fear retrieval. The results showed that high GABA levels were associated with increased SCRs, enhanced activation of the right amygdala, and reduced amygdala-ventromedial prefrontal cortex connectivity during fear recovery. Follow-up analyses exclusively for the extinction phase showed that high GABA levels were associated with reduced amygdala activation and enhanced amygdala-ventromedial prefrontal cortex connectivity, despite the absence of correlations between GABA and physiological responses. Follow-up analyses for the retrieval phase did not show any significant associations with GABA. Together, the association between GABA and increases in SCRs from extinction to retrieval, without associations during both phases separately, suggests that dACC GABA primarily inhibits the consolidation of fear extinction. In addition, the opposite effects of GABA on amygdala activity and connectivity during fear extinction compared to fear recovery suggest that dACC GABA may initially facilitate extinction learning

    GABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans

    No full text
    Relapse of fear after successful treatment is a common phenomenon in patients with anxiety disorders. Animal research suggests that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) plays a key role in the maintenance of extinguished fear. Here, we combined magnetic resonance spectroscopy and functional magnetic resonance imaging to investigate the role of GABA in fear recovery in 70 healthy male participants. We associated baseline GABA levels in the dorsal anterior cingulate cortex (dACC) to indices of fear recovery as defined by changes in skin conductance responses (SCRs), blood oxygen level dependent responses, and functional connectivity from fear extinction to fear retrieval. The results showed that high GABA levels were associated with increased SCRs, enhanced activation of the right amygdala, and reduced amygdala-ventromedial prefrontal cortex connectivity during fear recovery. Follow-up analyses exclusively for the extinction phase showed that high GABA levels were associated with reduced amygdala activation and enhanced amygdala-ventromedial prefrontal cortex connectivity, despite the absence of correlations between GABA and physiological responses. Follow-up analyses for the retrieval phase did not show any significant associations with GABA. Together, the association between GABA and increases in SCRs from extinction to retrieval, without associations during both phases separately, suggests that dACC GABA primarily inhibits the consolidation of fear extinction. In addition, the opposite effects of GABA on amygdala activity and connectivity during fear extinction compared to fear recovery suggest that dACC GABA may initially facilitate extinction learnin

    Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder

    No full text
    Little is known about the underlying neural mechanism of deep brain stimulation (DBS). We found that DBS targeted at the nucleus accumbens (NAc) normalized NAc activity, reduced excessive connectivity between the NAc and prefrontal cortex, and decreased frontal low-frequency oscillations during symptom provocation in patients with obsessive-compulsive disorder. Our findings suggest that DBS is able to reduce maladaptive activity and connectivity of the stimulated regio
    corecore