1,098 research outputs found

    Swift J1112.2-8238: A Candidate Relativistic Tidal Disruption Flare

    Get PDF
    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare (rTDF). The outburst was first detected by Swift/BAT in June 2011 as an unknown, long-lived (order of days) γ\gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z=0.89z=0.89 based on a single emission line that we interpret as the blended [OII]λ3727\lambda3727 doublet. At this redshift, the peak X/γ\gamma-ray luminosity exceeded 104710^{47} ergs s−1^{-1}, while a spatially coincident optical transient source had i′∼22i^{\prime} \sim 22 (Mg∼−21.4_g \sim -21.4 at z=0.89z=0.89) during early observations, ∼20\sim 20 days after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late time observations, almost 3 years post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ∼\sim3 month period (<3%<3\% of its total lifetime as of March 2015). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.Comment: 11 pages, 5 figures, accepted for publication by MNRA

    GRB 070714B - Discovery of the Highest Spectroscopically Confirmed Short Burst Redshift

    Full text link
    Gemini Nod & Shuffle spectroscopy on the host of the short GRB 070714B shows a single emission line at 7167 angstroms which, based on a grizJHK photometric redshift, we conclude is the 3727 angstrom [O II] line. This places the host at a redshift of z=.923 exceeding the previous record for the highest spectroscopically confirmed short burst redshift of z=.546 held by GRB 051221. This dramatically moves back the time at which we know short bursts were being formed, and suggests that the present evidence for an old progenitor population may be observationally biased.Comment: Conference procedings for Gamma Ray Bursts 2007 November 5-9, 2007 Santa Fe, New Mexico (4 pages, 2 figures

    The early and late-time spectral and temporal evolution of GRB 050716

    Get PDF
    We report on a comprehensive set of observations of Gamma Ray Burst 050716, detected by the Swift satellite and subsequently followed-up rapidly in X-ray, optical and near infra-red wavebands. The prompt emission is typical of long-duration bursts, with two peaks in a time interval of T90 = 68 seconds (15 - 350 keV). The prompt emission continues at lower flux levels in the X-ray band, where several smaller flares can be seen, on top of a decaying light curve that exhibits an apparent break around 220 seconds post trigger. This temporal break is roughly coincident with a spectral break. The latter can be related to the extrapolated evolution of the break energy in the prompt gamma-ray emission, and is possibly the manifestation of the peak flux break frequency of the internal shock passing through the observing band. A possible 3 sigma change in the X-ray absorption column is also seen during this time. The late-time afterglow behaviour is relatively standard, with an electron distribution power-law index of p = 2 there is no noticable temporal break out to at least 10 days. The broad-band optical/nIR to X-ray spectrum indicates a redshift of z ~> 2 for this burst, with a host-galaxy extinction value of E(B-V) ~ 0.7 that prefers an SMC-like extinction curve.Comment: Accepted to MNRAS. 8 pages, 5 figure

    GRB 050911: a black hole - neutron star merger or a naked GRB

    Get PDF
    GRB 050911, discovered by the Swift Burst Alert Telescope, was not seen 4.6 hr later by the Swift X-ray Telescope, making it one of the very few X-ray non-detections of a Gamma-Ray Burst (GRB) afterglow at early times. The gamma-ray light-curve shows at least three peaks, the first two of which (~T_0 - 0.8 and T_0 + 0.2 s, where T_0 is the trigger time) were short, each lasting 0.5 s. This was followed by later emission 10-20 s post-burst. The upper limit on the unabsorbed X-ray flux was 1.7 x 10^-14 erg cm^-2 s^-1 (integrating 46 ks of data taken between 11 and 18 September), indicating that the decay must have been rapid. All but one of the long bursts detected by Swift were above this limit at ~4.6 hr, whereas the afterglows of short bursts became undetectable more rapidly. Deep observations with Gemini also revealed no optical afterglow 12 hr after the burst, down to r=24.0 (5-sigma limit). We speculate that GRB 050911 may have been formed through a compact object (black hole-neutron star) merger, with the later outbursts due to a longer disc lifetime linked to a large mass ratio between the merging objects. Alternatively, the burst may have occured in a low density environment, leading to a weak, or non-existent, forward shock - the so-called 'naked GRB' model.Comment: 4 pages using emulateapj; 2 figures. Accepted for publication in ApJ Letter

    The first Swift X-ray Flash: The faint afterglow of XRF 050215B

    Get PDF
    We present the discovery of XRF 050215B and its afterglow. The burst was detected by the Swift BAT during the check-out phase and observations with the X-ray telescope began approximately 30 minutes after the burst. These observations found a faint, slowly fading X-ray afterglow near the centre of the error box as reported by the BAT. Infrared data, obtained at UKIRT after 10 hours also revealed a very faint K-band afterglow. The afterglow appear unusual since it is very faint, especially in the infrared with K>20 only 9 hours post burst. The X-ray and infrared lightcurves exhibit a slow, monotonic decay with alpha=0.8 and no evidence for steepening associated with the jet break to 10 days post burst. We discuss possible explanations for the faintness and slow decay in the context of present models for the production of X-ray Flashes.Comment: 8 pages, 5 figures, accepted for publication in Ap
    • …
    corecore