4 research outputs found

    Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors

    Get PDF
    Both external and internal exposure to ionizing radiation are strong risk factors for the development of thyroid tumors. Until now, the diagnosis of radiation-induced thyroid tumors has been deduced from a network of arguments taken together with the individual history of radiation exposure. Neither the histological features nor the genetic alterations observed in these tumors have been shown to be specific fingerprints of an exposure to radiation. The aim of our work is to define ionizing radiation-related molecular specificities in a series of secondary thyroid tumors developed in the radiation field of patients treated by radiotherapy. To identify molecular markers that could represent a radiation-induction signature, we compared 25K microarray transcriptome profiles of a learning set of 28 thyroid tumors, which comprised 14 follicular thyroid adenomas (FTA) and 14 papillary thyroid carcinomas (PTC), either sporadic or consecutive to external radiotherapy in childhood. We identified a signature composed of 322 genes which discriminates radiation-induced tumors (FTA and PTC) from their sporadic counterparts. The robustness of this signature was further confirmed by blind case-by-case classification of an independent set of 29 tumors (16 FTA and 13 PTC). After the histology code break by the clinicians, 26/29 tumors were well classified regarding tumor etiology, 1 was undetermined, and 2 were misclassified. Our results help shed light on radiation-induced thyroid carcinogenesis, since specific molecular pathways are deregulated in radiation-induced tumors

    Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells

    Get PDF
    Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after γ-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-α permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-α, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation

    Molecular analysis of the Ink4a/Rb1-Arf/Tp53 pathways in radon-induced rat lung tumors.

    No full text
    International audienceInhalation of radon is closely associated with an increased risk of lung cancers. While the involvement of Ink4a in lung tumor development has been widely described, the tumor suppressor gene has not been studied in radon-induced lung tumors. In this study, loss of heterozygosity (LOH) analysis of the Cdkn2a locus, common to the Ink4a and Arf genes, was performed on 33 radon-induced rat lung tumors and showed a DNA loss in 50% of cases. The analysis of p16(Ink4a) protein expression by immunohistochemistry revealed that 50% of the tumors were negative for this protein. Looking for the origin of this lack of expression, we observed a low frequency of homozygous deletion (6%), a lack of mutation, an absence of correlation between promoter methylation and Ink4a mRNA expression and no correlation between LOH and protein expression. However, a tendency for an inverse correlation between p16(Ink4a) and pRb protein expression was observed. The expressions of p19Arf, Mmd2 and Mdm4 were not deregulated and only 14% of the tumors were mutated for Tp53. These results indicated that Ink4a/Cdk4/Rb1 pathway deregulation, more than Arf/Mdm2/Tp53 pathway, has a major role in the development of these tumors through p16(Ink4a) deregulation. However, all known mechanisms of inactivation of the pathway do not play a recurrent role in these tumors and the actual origin of the lack of p16(Ink4a) protein expression remains to be established
    corecore