12 research outputs found

    On the problem of interactions in quantum theory

    Full text link
    The structure of representations describing systems of free particles in the theory with the invariance group SO(1,4) is investigated. The property of the particles to be free means as usual that the representation describing a many-particle system is the tensor product of the corresponding single-particle representations (i.e. no interaction is introduced). It is shown that the mass operator contains only continuous spectrum in the interval (,)(-\infty,\infty) and such representations are unitarily equivalent to ones describing interactions (gravitational, electromagnetic etc.). This means that there are no bound states in the theory and the Hilbert space of the many-particle system contains a subspace of states with the following property: the action of free representation operators on these states is manifested in the form of different interactions. Possible consequences of the results are discussed.Comment: 35 pages, Late

    Point-Form Analysis of Elastic Deuteron Form Factors

    Full text link
    Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Argonne v18v_{18} and Reid '93 interactions. A point-form spectator approximation (PFSA) is introduced to define a conserved covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate description of data up to momentum transfers of 0.5 GeV2{\rm GeV}^2, but falls below the data at higher momentum transfers. Results are sensitive to the nucleon form factor parameterization chosen, particularly to the neutron electric form factor.Comment: RevTex, 31 pages, 1 table, 13 figure

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Low-Frequency Magnetic Scanning Device and Algorithm for Determining the Magnetic and Non-Magnetic Fractions of Moving Metallurgical Raw Materials

    No full text
    The development of an algorithm to automate the process of measuring the magnetic properties of macroscopic objects in motion is an important problem in various industries, especially in ferrous metallurgy and at factories where ferrous scrap is a strategic raw material. The parameter that requires work control is the hidden mass fraction of a non-magnetic substance that is present in the ferromagnetic raw material. The solution to this problem has no prototypes. In our work, a simple measuring device and a mathematical algorithm for calculating the mass fraction of the non-magnetic fraction in a strongly magnetic matrix were developed. The device is an inductance coil, in which the angle of the electromagnet losses is related to the mass of the magnetic material moving the coil. The magnitude of the instantaneous values of the lost angle integral was compared with the result of weighing the object on scales. This allowed us to calculate the proportion of the magnetic and non-magnetic fractions. The use of this prototype is herein illustrated. The experimental results of the determination of the magnetic-fractional composition depending on the mass of scrap metal and its bulk and the magnetic characteristics are presented

    Photoinduced Transition from Quasi-Two-Dimensional Ruddlesden–Popper to Three-Dimensional Halide Perovskites for the Optical Writing of Multicolor and Light-Erasable Images

    No full text
    Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden–Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450–600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels

    Photoinduced Transition from Quasi-Two-Dimensional Ruddlesden–Popper to Three-Dimensional Halide Perovskites for the Optical Writing of Multicolor and Light-Erasable Images

    No full text
    Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden–Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450–600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels

    Identification of HI-Like Loop in CELO Adenovirus Fiber for Incorporation of Receptor Binding Motifs▿

    No full text
    Vectors based on the chicken embryo lethal orphan (CELO) avian adenovirus (Ad) have two attractive properties for gene transfer applications: resistance to preformed immune responses to human Ads and the ability to grow in chicken embryos, allowing low-cost production of recombinant viruses. However, a major limitation of this technology is that CELO vectors demonstrate decreased efficiency of gene transfer into cells expressing low levels of the coxsackie-Ad receptor (CAR). In order to improve the efficacy of gene transfer into CAR-deficient cells, we modified viral tropism via genetic alteration of the CELO fiber 1 protein. The αv integrin-binding motif (RGD) was incorporated at two different sites of the fiber 1 knob domain, within an HI-like loop that we identified and at the C terminus. Recombinant fiber-modified CELO viruses were constructed containing secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein genes as reporter genes. Our data show that insertion of the RGD motif within the HI-like loop of the fiber resulted in significant enhancement of gene transfer into CAR-negative and CAR-deficient cells. In contrast, CELO vectors containing the RGD motif at the fiber 1 C terminus showed reduced transduction of all cell lines. CELO viruses modified with RGD at the HI-like loop transduced the SEAP reporter gene into rabbit mammary gland cells in vivo with an efficiency significantly greater than that of unmodified CELO vector and similar to that of Ad type 5 vector. These results illustrate the potential for efficient CELO-mediated gene transfer into a broad range of cell types through modification of the identified HI-like loop of the fiber 1 protein

    Single-Step Fabrication of Resonant Silicon–Gold Hybrid Nanoparticles for Efficient Optical Heating and Nanothermometry in Cells

    No full text
    Heat is a well-known treatment method for a wide range of diseases. Hyperthermia treatment or intentional overheating of cells is a rapidly developing therapeutic strategy in cancer treatment. All-dielectric nanophotonics has established itself in optical applications, including nanothermometry and optical heating; generally, it involves Mie resonances in nonplasmonic nanoparticles (NPs). However, such nanomaterials do not always provide sufficient heating due to their nonoptimal size distribution after fabrication by nonlithographic approaches. To overcome this limitation, additional steps, such as size-separation of NPs, are required. Another strategy for efficient heating is intelligent integration of plasmonic and all-dielectric nanostructures to develop hybrid nanomaterials with outstanding optical performances, e.g., efficient nanoheaters and nanothermometers. Taking this into account, we report on a simple and accessible approach for the fabrication of hybrid silicon–gold NPs. Their heating abilities are further compared with those of pristine monodispersed Si NPs inside and outside B16–F10 melanoma cells and confirmed by simultaneous nanoscale thermometry. The obtained results show that the obtained hybrid nanomaterials are more efficient nanoheaters even in biological environments, where cell inhomogeneity and deviations of NP sizes make it difficult to exactly meet the critical coupling conditions
    corecore