3 research outputs found

    Structure-Directing Interplay between Tetrel and Halogen Bonding in Co-Crystal of Lead(II) Diethyldithiocarbamate with Tetraiodoethylene

    No full text
    The co-crystallization of the lead(II) complex [Pb(S2CNEt2)2] with tetraiodoethylene (C2I4) gave the co-crystal, [Pb(S2CNEt2)2]∙½C2I4, whose X-ray structure exhibits only a small change of the crystal parameters than those in the parent [Pb(S2CNEt2)2]. The supramolecular organization of the co-crystal is largely determined by an interplay between Pb⋯S tetrel bonding (TeB) and I⋯S halogen bonding (HaB) with comparable contributions from these non-covalent contacts; the TeBs observed in the parent complex, [Pb(S2CNEt2)2], remain unchanged in the co-crystal. An analysis of the theoretical calculation data, performed for the crystal and cluster models of [Pb(S2CNEt2)2]∙½C2I4, revealed the non-covalent nature of the Pb⋯S TeB (−5.41 and −7.78 kcal/mol) and I⋯S HaB (−7.26 and −11.37 kcal/mol) interactions and indicate that in the co-crystal these non-covalent forces are similar in energy

    Spontaneous Transformation of Biomedical Polymeric Silver Salt into a Nanocomposite: Physical–Chemical and Antimicrobial Properties Dramatically Depend on the Initial Preparation State

    No full text
    An antimicrobial polyacrylic silver salt (freshly prepared, stored for one year and model-aged) was studied by physical–chemical techniques for nanoparticle detection. In all cases, this salt represents a composite of radical-enriched macromolecules and silver(0) nanoparticles. As time passed, the initial small spherical nanoparticles were converted into larger non-spherical silver nanoparticles. The initial highly water-soluble antimicrobial solid nanocomposite almost loses its solubility in water and cannot be used as an antimicrobial agent. Unlike insoluble solid silver polyacrylate, its freshly prepared aqueous solution retains a liquid-phase consistency after one year as well as pronounced antimicrobial properties. The mechanism of these spontaneous and model-simulated processes was proposed. These results have attracted attention for officinal biomedicinal silver salts as complex radical-enriched nanocomposite substances; they also indicate contrasting effects of silver polymeric salt storing in solid and solution forms that dramatically influence antimicrobial activity
    corecore