13 research outputs found

    Trialogue on the number of fundamental constants

    Get PDF
    This paper consists of three separate articles on the number of fundamental dimensionful constants in physics. We started our debate in summer 1992 on the terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the subject to find that our views still diverged and decided to explain our current positions. LBO develops the traditional approach with three constants, GV argues in favor of at most two (within superstring theory), while MJD advocates zero.Comment: Version appearing in JHEP; 31 pages late

    Could Only Fermions Be Elementary?

    Full text link
    In standard Poincare and anti de Sitter SO(2,3) invariant theories, antiparticles are related to negative energy solutions of covariant equations while independent positive energy unitary irreducible representations (UIRs) of the symmetry group are used for describing both a particle and its antiparticle. Such an approach cannot be applied in de Sitter SO(1,4) invariant theory. We argue that it would be more natural to require that (*) one UIR should describe a particle and its antiparticle simultaneously. This would automatically explain the existence of antiparticles and show that a particle and its antiparticle are different states of the same object. If (*) is adopted then among the above groups only the SO(1,4) one can be a candidate for constructing elementary particle theory. It is shown that UIRs of the SO(1,4) group can be interpreted in the framework of (*) and cannot be interpreted in the standard way. By quantizing such UIRs and requiring that the energy should be positive in the Poincare approximation, we conclude that i) elementary particles can be only fermions. It is also shown that ii) C invariance is not exact even in the free massive theory and iii) elementary particles cannot be neutral. This gives a natural explanation of the fact that all observed neutral states are bosons.Comment: The paper is considerably revised and the following results are added: in the SO(1,4) invariant theory i) the C invariance is not exact even for free massive particles; ii) neutral particles cannot be elementar

    Experimental search for muonic photons

    Get PDF
    We report new limits on the production of muonic photons in the CERN neutrino beam. The results are based on the analysis of neutrino production of dimuons in the CHARM II detector. A 90%90\% CL limit on the coupling constant of muonic photons, αμ/α<(1.5÷3.2)×106\alpha_{\mu} / \alpha < (1.5 \div 3.2) \times10^{-6} is derived for a muon neutrino mass in the range mνμ=(1020÷105)m_{\nu_{\mu}} = (10^{-20} \div 10^5) eV. This improves the limit obtained from a precision measurement of the anomalous magnetic moment of the muon (g2)μ(g-2)_\mu by a factor from 8 to 4
    corecore