3 research outputs found

    Protective role of 17 beta-estradiol treatment in renal injury on female rats submitted to brain death

    Get PDF
    Background: Clinical and experimental data highlight the consequences of brain death on the quality of organs and demonstrate the importance of donor state to the results of transplantation. Female rats show higher cardio-pulmonary injury linked to decreased concentrations of female sex hormones after brain-dead (BD). This study evaluated the effect of 17 beta-estradiol on brain death induced renal injury in female rats. Methods: Female Wistar rats were randomically allocated into 4 groups: false-operation (Sham), BD, treatment with 17 beta-estradiol (50 mu g/mL, 2 mL/h) 3 h after brain death (E2-T3), or immediately after brain death confirmation (E2-T0). Creatinine, urea, cytokines, and complement system components were quantified. Renal injury markers, such as KIM-1, Caspase-3, BCL-2 and MMP2/9 were evaluated. Results: Brain death leads to increased kidney KIM-1 expression and longer 17 beta-estradiol treatment resulted in downregulation (

    Long-term lung inflammation is reduced by estradiol treatment in brain dead female rats

    Get PDF
    OBJECTIVES: Lung transplantation is limited by the systemic repercussions of brain death (BD). Studies have shown the potential protective role of 17 beta-estradiol on the lungs. Here, we aimed to investigate the effect of estradiol on the long-lasting lung inflammatory state to understand a possible therapeutic application in lung donors with BD. METHODS: Female Wistar rats were separated into 3 groups: BD, subjected to brain death (6h); E2-T0, treated with 17 beta-estradiol (50 mu g/mL, 2 mL/h) immediately after brain death; and E2-T3, treated with 17 beta-estradiol (50 mu g/ml, 2 ml/h) after 3h of BD. Complement system activity and macrophage presence were analyzed. TNF-alpha, IL-1 beta, IL-10, and IL-6 gene expression (RT-PCR) and levels in 24h lung culture medium were quantified. Finally, analysis of caspase-3 gene and protein expression in the lung was performed. RESULTS: Estradiol reduced complement C3 protein and gene expression. The presence of lung macrophages was not modified by estradiol, but the release of inflammatory mediators was reduced and TNF-alpha and IL-1 beta gene expression were reduced in the E2-T3 group. In addition, caspase-3 protein expression was reduced by estradiol in the same group. CONCLUSIONS: Brain death-induced lung inflammation in females is modulated by estradiol treatment. Study data suggest that estradiol can control the inflammatory response by modulating the release of mediators after brain death in the long term. These results strengthen the idea of estradiol as a therapy for donor lungs and improving transplant outcomes

    Establishing an economical and widely accessible donation after circulatory death animal abattoir model for lung research using ex vivo lung perfusion

    Get PDF
    Ex vivo lung perfusion (EVLP) is a preservation method that allows simultaneous testing and treatment of the lungs. However, use of EVLP is costly and requires access to lab animals and accompanying facilities. To increase the use of EVLP for research, we developed a method to perform EVLP using abattoir procured lungs. Six pair of lungs were procured from abattoir sheep. The lungs were then flushed and stored in ice for 3 hours. A low flow (20% of cardiac output) approach, a tidal volume of 6ml/kg bodyweight and total perfusion time of 3 hours were chosen. Perfusion fluids and circuits were self-made. Mean pO2 remained stable from 60 minutes (49.3 ± 7.1kPa) to 180 minutes (51.5kPa ± 8.0), p = 0.66. Pulmonary artery pressure remained ≤ 15 mmHg and the left atrial pressure remained between 3-5 mmHg and peak respiratory pressures ≤ 20 cmH2 O. Lactate dehydrogenase increased from start (96.3 ± 56.4 u/L) to end of perfusion (315.8 ± 85.0 u/L), p < 0.05. No difference was observed in ATP between procurement and post-EVLP, 129.7 ± 37.4 μmol/g protein to 132.0 ± 23.4 μmol/g, p = 0.92. These findings indicate that abattoir acquired sheep lungs can be preserved on EVLP
    corecore