255 research outputs found
Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation
Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation
The First ITS Meeting
The first International Transplant Science (ITS) meeting jointly organized by AST, ESOT and TTS was held on November 10-13, 2019 in Clearwater, Florida, to focus on issues related to the basic and translational science of immunology and transplantation. The 148 participants included international experts in transplantation, immunology, cell biology and organ engineering, as well as young investigators and trainees in these areas. The objectives of the meeting were to (1) introduce and discuss the latest discoveries, technologies and concepts in basic science of relevance to transplantation; (2) provide opportunities for every trainee and young investigators to present their work in mini-oral and mentored poster sessions; (3) have programmed networking opportunities to allow for the free exchange of ideas and developing new collaborations. Participants came away from the meeting inspired by the quality of science presented, excited by the opportunities to discuss science with fellow attendees, and enthusiasm for the next ITS meeting in 2020 in Europe
Normothermic machine perfusion of ischaemically damaged porcine kidneys with autologous, allogeneic porcine and human red blood cells
In porcine kidney auto-transplant models, red blood cells (RBCs) are required for ex-vivo normothermic machine perfusion (NMP). As large quantities of RBCs are needed for NMP, utilising autologous RBCs would imply lethal exsanguination of the pig that is donor and recipient-to-be in the same experiment. The purpose of this study was to determine if an isolated porcine kidney can also be perfused with allogeneic porcine or human RBCs instead. Porcine kidneys, autologous and allogeneic blood were obtained from a local slaughterhouse. Human RBCs (O-pos), were provided by our transfusion laboratory. Warm ischaemia time was standardised at 20 minutes and subsequent hypothermic machine perfusion lasted 1.5–2.5 hours. Next, kidneys underwent NMP at 37°C during 7 hours with Williams’ Medium E and washed, leukocyte depleted RBCs of either autologous, allogeneic, or human origin (n = 5 per group). During perfusion all kidneys were functional and produced urine. No macroscopic adverse reactions were observed. Creatinine clearance during NMP was significantly higher in the human RBC group in comparison with the allogeneic group (P = 0.049) but not compared to the autologous group. The concentration of albumin in the urine was significantly higher in the human RBC group (P <0.001) compared to the autologous and allogeneic RBC group. Injury marker aspartate aminotransferase was significantly higher in the human RBC group in comparison with the allogeneic group (P = 0.040) but not in comparison with the autologous group. Renal histology revealed glomerular and tubular damage in all groups. Signs of pathological hyperfiltration and microvascular injury were only observed in the human RBC group. In conclusion, perfusion of porcine kidneys with RBCs of different origin proved technically feasible. However, laboratory analysis and histology revealed more damage in the human RBC group compared to the other two groups. These results indicate that the use of allogeneic RBCs is preferable to human RBCs in a situation where autologous RBCs cannot be used for NMP
Doxycycline Alters the Porcine Renal Proteome and Degradome during Hypothermic Machine Perfusion
Ischemia-reperfusion injury (IRI) is a hallmark for tissue injury in donation after circulatory death (DCD) kidneys. The implementation of hypothermic machine perfusion (HMP) provides a platform for improved preservation of DCD kidneys. Doxycycline administration has shown protective effects during IRI. Therefore, we explored the impact of doxycycline on proteolytic degradation mechanisms and the urinary proteome of perfused kidney grafts. Porcine kidneys underwent 30 min of warm ischemia, 24 h of oxygenated HMP (control/doxycycline) and 240 min of ex vivo reperfusion. A proteomic analysis revealed distinctive clustering profiles between urine samples collected at T15 min and T240 min. High-efficiency undecanal-based N-termini (HUNTER) kidney tissue degradomics revealed significantly more proteolytic activity in the control group at T-10. At T240, significantly more proteolytic activity was observed in the doxycycline group, indicating that doxycycline alters protein degradation during HMP. In conclusion, doxycycline administration during HMP led to significant proteomic and proteolytic differences and protective effects by attenuating urinary NGAL levels. Ultimately, we unraveled metabolic, and complement and coagulation pathways that undergo alterations during machine perfusion and that could be targeted to attenuate IRI induced injury
Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways
The Effects of 6-Chromanol SUL-138 during Hypothermic Machine Perfusion on Porcine Deceased Donor Kidneys
Diminishing ischemia-reperfusion injury (IRI) by improving kidney preservation techniques offers great beneficial value for kidney transplant recipients. Mitochondria play an important role in the pathogenesis of IRI and are therefore interesting targets for pharmacological interventions. Hypothermic machine perfusion (HMP), as a preservation strategy, offers the possibility to provide mitochondrial–targeted therapies. This study focuses on the addition of a mitochondrial protective agent SUL—138 during HMP and assesses its effect on kidney function and injury during normothermic reperfusion. In this case, 30 min of warm ischemia was applied to porcine slaughterhouse kidneys before 24 h of non–oxygenated HMP with or without the addition of SUL—138. Functional assessment was performed by 4 h normothermic autologous blood reperfusion. No differences in renal function or perfusion parameters were found between both groups. ATP levels were lower after 30 min of warm ischemia in the SUL–138 group (n.s, p = 0.067) but restored significantly during 24 h of HMP in combination with SUL—138. Aspartate aminotransferase (ASAT) levels were significantly lower for the SUL—138 group. SUL—138 does not influence renal function in this model. Restoration of ATP levels during 24 h of HMP with the addition of SUL in combination with lower ASAT levels could be an indication of improved mitochondrial function
The impact of donor pancreas extraction time on graft survival and postoperative complications in pancreas transplant recipients
Background: Simultaneous pancreas kidney transplantation (SPK) is the best therapeutic option for patients with diabetes mellitus type 1 and end-stage renal disease. Recently, donor organ extraction time has been shown to affect kidney and liver graft survival. This study aimed to assess the effect of pancreas donor extraction time on graft survival and postoperative complications. Methods: We retrospectively analyzed all pancreas transplants performed in two Eurotransplant centers. The association of pancreas extraction time with pancreas graft survival was analyzed by a Cox proportional hazards regression analysis after 3 months, 1 and 5 year. Besides, the effect of pancreas extraction time on the incidence of severe postoperative complications was analyzed. Results: A total of 317 pancreas transplants were included in this study. Death-censored pancreas graft survival was 85.7% after one year and 76.7% after five years. Median pancreas donor extraction time was 64 min [IQR: 52-79 min]. After adjustment for potential confounders, death censored graft survival after 30 days (HR 1.01, 95% CI 0.9-1.03 (p = 0.23), 1 year (HR 1.01, 95% CI 0.99-1.03 (p = 0.22) and 5 years (HR 1.00, 95% CI 0.99-1.02 (p = 0.57) was not associated with pancreas donor extraction time. However, extraction time was significantly associated with a higher incidence of Clavien-Dindo >3 complications compared to Clavien-Dindo 1 + 2 complications: OR 1.012, 95% CI 1.00-1.02 (p = 0.039). Conclusions: Our findings suggest that although no effect on graft survival was found, limiting pancreas extraction time can have a significant impact on lowering postoperative complications
Renoprotective capacities of non-erythropoietic EPO derivative, ARA290, following renal ischemia/reperfusion injury
BACKGROUND: ARA290 is a non-erythropoietic EPO derivative which only binds to the cytoprotective receptor complex (EPOR(2)-βcR(2)) consisting of two EPO-receptors (EPOR) and two β common receptors (βcR). ARA290 is renoprotective in renal ischemia/reperfusion (I/R). In a renal I/R model we focussed on timing of post-reperfusional administration of ARA290. Furthermore, we investigated the anti-inflammatory properties of ARA290. METHODS: Twenty-six male Lewis/HanHsd rats were exposed to unilateral ischemia for 30 minutes, with subsequent removal of the contralateral kidney. Post-reperfusion, ARA290 was administered early (one hour), late (four hours) or repetitive (one and four hours). Saline was used as vehicle treatment. Rats were sacrificed after three days. RESULTS: Early ARA290 treatment improved renal function. Late- or repetitive treatment tended to improve clinical markers. Furthermore, early ARA290 treatment reduced renal inflammation and acute kidney injury at three days post-reperfusion. Late- or repetitive treatment did not affect inflammation or acute kidney injury. CONCLUSIONS: ARA290 attenuated renal ischemia/reperfusion injury. This study showed the anti-inflammatory effect of ARA290 and suggests early administration in the post-reperfusional phase is most effective. ARA290 is a candidate drug for protection against ischemic injury following renal transplantation
ARA290, a non-erythropoietic EPO derivative, attenuates renal ischemia/reperfusion injury
BACKGROUND: In contrast with various pre-clinical studies, recent clinical trials suggest that high dose erythropoietin (EPO) treatment following kidney transplantation does not improve short-term outcome and that it even increases the risk of thrombotic events. ARA290 is a non-erythropoietic EPO derivative and does not increase the risk of cardiovascular events, but potentially has cytoprotective capacities in prevention of renal ischemia/reperfusion injury. METHODS: Eight female Dutch Landrace pigs were exposed to unilateral renal ischemia for 45 minutes with simultaneous cannulation of the ureter of the ischemic kidney. ARA290 or saline was administered by an intravenous injection at 0, 2, 4 and 6 hours post-reperfusion. The animals were sacrificed seven days post-reperfusion. RESULTS: ARA290 increased glomerular filtration rate during the observation period of seven days. Furthermore, ARA290 tended to reduce MCP-1 and IL-6 expression 15 minutes post-reperfusion. Seven days post-reperfusion ARA290 reduced interstitial fibrosis. CONCLUSIONS: The improvement in renal function following renal ischemia/reperfusion and reduced structural damage observed in this study by ARA290 warrants further investigation towards clinical application
- …