12 research outputs found

    The Moraxella adhesin UspA1 binds to its human CEACAM1 receptor by a deformable trimeric coiled-coil

    Get PDF
    Moraxella catarrhalis is a ubiquitous human-specific bacterium commonly associated with upper and lower respiratory tract infections, including otitis media, sinusitis and chronic obstructive pulmonary disease. The bacterium uses an autotransporter protein UspA1 to target an important human cellular receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Using X-ray crystallography, we show that the CEACAM1 receptor-binding region of UspA1 unusually consists of an extended, rod-like left-handed trimeric coiled-coil. Mutagenesis and binding studies of UspA1 and the N-domain of CEACAM1 have been used to delineate the interacting surfaces between ligand and receptor and guide assembly of the complex. However, solution scattering, molecular modelling and electron microscopy analyses all indicate that significant bending of the UspA1 coiled-coil stalk also occurs. This explains how UspA1 can engage CEACAM1 at a site far distant from its head group, permitting closer proximity of the respective cell surfaces during infection

    Ceacam1 separates graft-versus-host-disease from graft-versus-tumor activity after experimental allogeneic bone marrow transplantation.

    Get PDF
    BACKGROUND: Allogeneic bone marrow transplantation (allo-BMT) is a potentially curative therapy for a variety of hematologic diseases, but benefits, including graft-versus-tumor (GVT) activity are limited by graft-versus-host-disease (GVHD). Carcinoembryonic antigen related cell adhesion molecule 1 (Ceacam1) is a transmembrane glycoprotein found on epithelium, T cells, and many tumors. It regulates a variety of physiologic and pathological processes such as tumor biology, leukocyte activation, and energy homeostasis. Previous studies suggest that Ceacam1 negatively regulates inflammation in inflammatory bowel disease models. METHODS: We studied Ceacam1 as a regulator of GVHD and GVT after allogeneic bone marrow transplantation (allo-BMT) in mouse models. In vivo, Ceacam1(-/-) T cells caused increased GVHD mortality and GVHD of the colon, and greater numbers of donor T cells were positive for activation markers (CD25(hi), CD62L(lo)). Additionally, Ceacam1(-/-) CD8 T cells had greater expression of the gut-trafficking integrin α(4)β(7), though both CD4 and CD8 T cells were found increased numbers in the gut post-transplant. Ceacam1(-/-) recipients also experienced increased GVHD mortality and GVHD of the colon, and alloreactive T cells displayed increased activation. Additionally, Ceacam1(-/-) mice had increased mortality and decreased numbers of regenerating small intestinal crypts upon radiation exposure. Conversely, Ceacam1-overexpressing T cells caused attenuated target-organ and systemic GVHD, which correlated with decreased donor T cell numbers in target tissues, and mortality. Finally, graft-versus-tumor survival in a Ceacam1(+) lymphoma model was improved in animals receiving Ceacam1(-/-) vs. control T cells. CONCLUSIONS: We conclude that Ceacam1 regulates T cell activation, GVHD target organ damage, and numbers of donor T cells in lymphoid organs and GVHD target tissues. In recipients of allo-BMT, Ceacam1 may also regulate tissue radiosensitivity. Because of its expression on both the donor graft and host tissues, this suggests that targeting Ceacam1 may represent a potent strategy for the regulation of GVHD and GVT after allogeneic transplantation

    Interdependency of CEACAM-1, -3, -6, and -8 induced human neutrophil adhesion to endothelial cells

    Get PDF
    Members of the carcinoembryonic antigen family (CEACAMs) are widely expressed, and, depending on the tissue, capable of regulating diverse functions including tumor promotion, tumor suppression, angiogenesis, and neutrophil activation. Four members of this family, CEACAM1, CEACAM8, CEACAM6, and CEACAM3 (recognized by CD66a, CD66b, CD66c, and CD66d mAbs, respectively), are expressed on human neutrophils. CD66a, CD66b, CD66c, and CD66d antibodies each increase neutrophil adhesion to human umbilical vein endothelial cell monolayers. This increase in neutrophil adhesion caused by CD66 antibodies is blocked by CD18 mAbs and is associated with upregulation of CD11/CD18 on the neutrophil surface. To examine potential interactions of CEACAMs in neutrophil signaling, the effects on neutrophil adhesion to human umbilical vein endothelial cells of a set of CD66 mAbs was tested following desensitization to stimulation by various combinations of these mAbs. Addition of a CD66 mAb in the absence of calcium results in desensitization of neutrophils to stimulation by that CD66 mAb. The current data show that desensitization of neutrophils to any two CEACAMs results in selective desensitization to those two CEACAMs, while the cells remain responsive to the other two neutrophil CEACAMs. In addition, cells desensitized to CEACAM-3, -6, and -8 were still responsive to stimulation of CEACAM1 by CD66a mAbs. In contrast, desensitization of cells to CEACAM1 and any two of the other CEACAMs left the cells unresponsive to all CD66 mAbs. Cells desensitized to any combination of CEACAMs remained responsive to the unrelated control protein CD63. Thus, while there is significant independence of the four neutrophil CEACAMs in signaling, CEACAM1 appears to play a unique role among the neutrophil CEACAMs. A model in which CEACAMs dimerize to form signaling complexes could accommodate the observations. Similar interactions may occur in other cells expressing CEACAMs

    CEACAM1 inhibits Toll-like receptor 2-triggered antibacterial responses of human pulmonary epithelial cells

    No full text
    Although Moraxella catarrhalis and Neisseria meningitidis are important human pathogens, they often colonize the human respiratory tract without causing overt clinical symptoms. Both pathogens express structurally unrelated proteins that share the ability to stimulate the adhesion molecule CEACAM1 expressed on human cells. Here we demonstrate that the interaction of CEACAM1 with ubiquitous surface protein A1 expressed on M. catarrhalis or with opacity-associated proteins on N. meningitidis resulted in reduced Toll-like receptor 2-initiated transcription factor NF-kappa B-dependent inflammatory responses of primary pulmonary epithelial cells. These inhibitory effects were mediated by tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif of CEACAM1 and by recruitment of the phosphatase SHP-1, which negatively regulated Toll-like receptor 2-dependent activation of the phosphatidylinositol 3-OH kinase-Akt kinase pathway. Our results identify a CEACAM1-dependent immune-evasion strategy
    corecore