7,021 research outputs found

    Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram

    Full text link
    The local geometry of a Riemannian symmetric space is described completely by the Riemannian metric and the Riemannian curvature tensor of the space. In the present article I describe how to compute these tensors for any Riemannian symmetric space from the Satake diagram, in a way that is suited for the use with computer algebra systems. As an example application, the totally geodesic submanifolds of the Riemannian symmetric space SU(3)/SO(3) are classified. The submission also contains an example implementation of the algorithms and formulas of the paper as a package for Maple 10, the technical documentation for this implementation, and a worksheet carrying out the computations for the space SU(3)/SO(3) used in the proof of Proposition 6.1 of the paper.Comment: 23 pages, also contains two Maple worksheets and technical documentatio

    A comparison of two magnetic ultra-cold neutron trapping concepts using a Halbach-octupole array

    Full text link
    This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field solenoid. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements

    Magnon Dispersion and Anisotropies in SrCu2_2(BO3_3)2_2

    Full text link
    We study the dispersion of the magnons (triplet states) in SrCu2_2(BO3_3)2_2 including all symmetry-allowed Dzyaloshinskii-Moriya interactions. We can reduce the complexity of the general Hamiltonian to a new simpler form by appropriate rotations of the spin operators. The resulting Hamiltonian is studied by both perturbation theory and exact numerical diagonalization on a 32-site cluster. We argue that the dispersion is dominated by Dzyaloshinskii-Moriya interactions. We point out which combinations of these anisotropies affect the dispersion to linear-order, and extract their magnitudes.Comment: 11 pages, 7 figures, 1 table, v2 conclusion shortened, figs clarifie

    Random walks near Rokhsar-Kivelson points

    Full text link
    There is a class of quantum Hamiltonians known as Rokhsar-Kivelson(RK)-Hamiltonians for which static ground state properties can be obtained by evaluating thermal expectation values for classical models. The ground state of an RK-Hamiltonian is known explicitly, and its dynamical properties can be obtained by performing a classical Monte Carlo simulation. We discuss the details of a Diffusion Monte Carlo method that is a good tool for studying statics and dynamics of perturbed RK-Hamiltonians without time discretization errors. As a general result we point out that the relation between the quantum dynamics and classical Monte Carlo simulations for RK-Hamiltonians follows from the known fact that the imaginary-time evolution operator that describes optimal importance sampling, in which the exact ground state is used as guiding function, is Markovian. Thus quantum dynamics can be studied by a classical Monte Carlo simulation for any Hamiltonian that is free of the sign problem provided its ground state is known explicitly.Comment: 12 pages, 9 figures, RevTe

    Quantum Deconstruction of 5D SQCD

    Get PDF
    We deconstruct the fifth dimension of 5D SCQD with general numbers of colors and flavors and general 5D Chern-Simons level; the latter is adjusted by adding extra quarks to the 4D quiver. We use deconstruction as a non-stringy UV completion of the quantum 5D theory; to prove its usefulness, we compute quantum corrections to the SQCD_5 prepotential. We also explore the moduli/parameter space of the deconstructed SQCD_5 and show that for |K_CS| < N_F/2 it continues to negative values of 1/(g_5)^2. In many cases there are flop transitions connecting SQCD_5 to exotic 5D theories such as E0, and we present several examples of such transitions. We compare deconstruction to brane-web engineering of the same SQCD_5 and show that the phase diagram is the same in both cases; indeed, the two UV completions are in the same universality class, although they are not dual to each other. Hence, the phase structure of an SQCD_5 (and presumably any other 5D gauge theory) is inherently five-dimensional and does not depends on a UV completion.Comment: LaTeX+PStricks, 108 pages, 41 colored figures. Please print in colo
    • …
    corecore