10,484 research outputs found
Testing Alternative Theories of the Property Price-Trading Volume Correlation
This article examines the correlation between the real housing price and trading volume. Contrary to the predictions of standard rational expectation models, a robust positive correlation between the two variables is identified. While no clear lead-lag relationship is found in the raw data, which is more consistent with the downpayment effect model, the medium-run component of the trading volume tends to lead (and Granger cause) the corresponding component of the property price, which is more consistent with the search theoretic model. An explanation for this difference in behavior is suggested and several future research directions are provided.
Heuristic derivation of continuum kinetic equations from microscopic dynamics
We present an approximate and heuristic scheme for the derivation of
continuum kinetic equations from microscopic dynamics for stochastic,
interacting systems. The method consists of a mean-field type, decoupled
approximation of the master equation followed by the `naive' continuum limit.
The Ising model and driven diffusive systems are used as illustrations. The
equations derived are in agreement with other approaches, and consequences of
the microscopic dependences of coarse-grained parameters compare favorably with
exact or high-temperature expansions. The method is valuable when more
systematic and rigorous approaches fail, and when microscopic inputs in the
continuum theory are desirable.Comment: 7 pages, RevTeX, two-column, 4 PS figures include
Viability of competing field theories for the driven lattice gas
It has recently been suggested that the driven lattice gas should be
described by a novel field theory in the limit of infinite drive. We review the
original and the new field theory, invoking several well-documented key
features of the microscopics. Since the new field theory fails to reproduce
these characteristics, we argue that it cannot serve as a viable description of
the driven lattice gas. Recent results, for the critical exponents associated
with this theory, are re-analyzed and shown to be incorrect.Comment: 4 pages, revtex, no figure
Generating compact classifier systems using a simple artificial immune system
Current artificial immune system (AIS) classifiers have two major problems: 1) their populations of B-cells can grow to huge proportions, and 2) optimizing one B-cell (part of the classifier) at a time does not necessarily guarantee that the B-cell pool (the whole classifier) will be optimized. In this paper, the design of a new AIS algorithm and classifier system called simple AIS is described. It is different from traditional AIS classifiers in that it takes only one B-cell, instead of a B-cell pool, to represent the classifier. This approach ensures global optimization of the whole system, and in addition, no population control mechanism is needed. The classifier was tested on seven benchmark data sets using different classification techniques and was found to be very competitive when compared to other classifiers
Unification of bulk and interface electroresistive switching in oxide systems
We demonstrate that the physical mechanism behind electroresistive switching
in oxide Schottky systems is electroformation, as in insulating oxides.
Negative resistance shown by the hysteretic current-voltage curves proves that
impact ionization is at the origin of the switching. Analyses of the
capacitance-voltage and conductance-voltage curves through a simple model show
that an atomic rearrangement is involved in the process. Switching in these
systems is a bulk effect, not strictly confined at the interface but at the
charge space region.Comment: 4 pages, 3 figures, accepted in PR
Quasinormal Modes of Dirty Black Holes
Quasinormal mode (QNM) gravitational radiation from black holes is expected
to be observed in a few years. A perturbative formula is derived for the shifts
in both the real and the imaginary part of the QNM frequencies away from those
of an idealized isolated black hole. The formulation provides a tool for
understanding how the astrophysical environment surrounding a black hole, e.g.,
a massive accretion disk, affects the QNM spectrum of gravitational waves. We
show, in a simple model, that the perturbed QNM spectrum can have interesting
features.Comment: 4 pages. Published in PR
Logarithmic perturbation theory for quasinormal modes
Logarithmic perturbation theory (LPT) is developed and applied to quasinormal
modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is
especially convenient because summation over a complete set of unperturbed
states is not required. Attention is paid to potentials with exponential tails,
and the example of a Poschl-Teller potential is briefly discussed. A numerical
method is developed that handles the exponentially large wavefunctions which
appear in dealing with QNMs.Comment: 24 pages, 4 Postscript figures, uses ioplppt.sty and epsfig.st
Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System
We study the one-dimensional Cahn-Hilliard equation with an additional
driving term representing, say, the effect of gravity. We find that the driving
field has an asymmetric effect on the solution for a single stationary
domain wall (or `kink'), the direction of the field determining whether the
analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are
unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The
behaviour of a bubble is dependent on the relative sizes of a characteristic
length scale , where is the driving field, and the separation, ,
of the interfaces. For the velocities of the interfaces are
negligible, while in the opposite limit a travelling-wave solution is found
with a velocity . For this latter case () a set of
reduced equations, describing the evolution of the domain lengths, is obtained
for a system with a large number of interfaces, and implies a characteristic
length scale growing as . Numerical results for the domain-size
distribution and structure factor confirm this behavior, and show that the
system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.
Perturbative Approach to the Quasinormal Modes of Dirty Black Holes
Using a recently developed perturbation theory for uasinormal modes (QNM's),
we evaluate the shifts in the real and imaginary parts of the QNM frequencies
due to a quasi-static perturbation of the black hole spacetime. We show the
perturbed QNM spectrum of a black hole can have interesting features using a
simple model based on the scalar wave equation.Comment: Published in PR
- âŠ