3 research outputs found

    Analysis of spatial data with a nested correlation structure

    No full text
    Spatial statistical analyses are often used to study the link between environmental factors and the incidence of diseases. In modelling spatial data, the existence of spatial correlation between observations must be considered. However, in many situations, the exact form of the spatial correlation is unknown. This paper studies environmental factors that might influence the incidence of malaria in Afghanistan. We assume that spatial correlation may be induced by multiple latent sources. Our method is based on a generalized estimating equation of the marginal mean of disease incidence, as a function of the geographical factors and the spatial correlation. Instead of using one set of generalized estimating equations, we embed a series of generalized estimating equations, each reflecting a particular source of spatial correlation, into a larger system of estimating equations. To estimate the spatial correlation parameters, we set up a supplementary set of estimating equations based on the correlation structures that are induced from the various sources. Simultaneous estimation of the mean and correlation parameters is performed by alternating between the two systems of equations. 2017 Royal Statistical SocietyWe thank the Associate Editor and the referees for their perceptive comments and suggestions, that have led to a greatly improved version of this paper. Denis Leung�s research is funded by the Research Center at Singapore Management University. You-Gan Wang�s research is funded by Australian Research Council discovery grant DP130100766 and project DP160104292.Scopu

    Joint spatial time-series epidemiological analysis of malaria and cutaneous leishmaniasis infection

    No full text
    Malaria and leishmaniasis are among the two most important health problems of many developing countries especially in the Middle East and North Africa. It is common for vector-borne infectious diseases to have similar hotspots which may be attributed to the overlapping ecological distribution of the vector. Hotspot analyses were conducted to simultaneously detect the location of local hotspots and test their statistical significance. Spatial scan statistics were used to detect and test hotspots of malaria and cutaneous leishmaniasis (CL) in Afghanistan in 2009. A multivariate negative binomial model was used to simultaneously assess the effects of environmental variables on malaria and CL. In addition to the dependency between malaria and CL disease counts, spatial and temporal information were also incorporated in the model. Results indicated that malaria and CL incidence peaked at the same periods. Two hotspots were detected for malaria and three for CL. The findings in the current study show an association between the incidence of malaria and CL in the studied areas of Afghanistan. The incidence of CL disease in a given month is linked with the incidence of malaria in the previous month. Co-existence of malaria and CL within the same geographical area was supported by this study, highlighting the presence and effects of environmental variables such as temperature and precipitation. People living in areas with malaria are at increased risk for leishmaniasis infection. Local healthcare authorities should consider the co-infection problem by recommending systematic malaria screening for all CL patients
    corecore