520 research outputs found

    Bandgap properties of two-dimensional low-index photonic crystals

    Full text link
    We study the bandgap properties of two-dimensional photonic crystals created by a lattice of rods or holes conformed in a symmetric or asymmetric triangular structure. Using the plane-wave analysis, we calculate a minimum value of the refractive index contrast for opening both partial and full two-dimensional spectral gaps for both TM and TE polarized waves. We also analyze the effect of ellipticity of rods and holes and their orientation on the threshold value and the relative size of the bandgap.Comment: 5 pages, 6 figures, App. Phys. B. styl

    Manifestation of photonic band structure in small clusters of spherical particles

    Get PDF
    We study the formation of the photonic band structure in small clusters of dielectric spheres. The first signs of the band structure, an attribute of an infinite crystal, can appear for clusters of 5 particles. Density of resonant states of a cluster of 32 spheres may exhibit a well defined structure similar to the density of electromagnetic states of the infinite photonic crystal. The resonant mode structure of finite-size aggregates is shown to be insensitive to random displacements of particles off the perfect lattice positions as large as half-radius of the particle. The results were obtained by an efficient numerical method, which relates the density of resonant states to the the scattering coefficients of the electromagnetic scattering problem. Generalized multisphere Mie (GMM) solution was used to obtain scattering matrix elements. These results are important to miniature photonic crystal design as well as understanding of light localization in dense random media.Comment: 4 pages, 2 figure

    Interaction Properties of the Periodic and Step-like Solutions of the Double-Sine-Gordon Equation

    Full text link
    The periodic and step-like solutions of the double-Sine-Gordon equation are investigated, with different initial conditions and for various values of the potential parameter ϵ\epsilon. We plot energy and force diagrams, as functions of the inter-soliton distance for such solutions. This allows us to consider our system as an interacting many-body system in 1+1 dimension. We therefore plot state diagrams (pressure vs. average density) for step-like as well as periodic solutions. Step-like solutions are shown to behave similarly to their counterparts in the Sine-Gordon system. However, periodic solutions show a fundamentally different behavior as the parameter ϵ\epsilon is increased. We show that two distinct phases of periodic solutions exist which exhibit manifestly different behavior. Response functions for these phases are shown to behave differently, joining at an apparent phase transition point.Comment: 17pages, 15 figure

    An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model

    Full text link
    We have calculated S(q) and the single particle distribution function for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site lattice with periodic boundary conditions; we justify the use of this lattice in compariosn to those of having the full square symmetry of the bulk. This new cluster has a high density of vec k points along the diagonal of reciprocal space, viz. along k = (k,k). The results clearly demonstrate that when the single hole problem has a ground state with a system momentum of vec k = (pi/2,pi/2), the resulting ground state for N holes involves a shift of the peak of the system's structure factor away from the antiferromagnetic state. This shift effectively increases continuously with N. When the single hole problem has a ground state with a momentum that is not equal to k = (pi/2,pi/2), then the above--mentioned incommensurability for N holes is not found. The results for the incommensurate ground states can be understood in terms of rigid--band filling: the effective occupation of the single hole k = (pi/2,pi/2) states is demonstrated by the evaluation of the single particle momentum distribution function . Unlike many previous studies, we show that for the many hole ground state the occupied momentum states are indeed k = (+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include

    Changing patterns of intimate partner violence against pregnant women: a three-year longitudinal study

    Get PDF
    Intimate partner violence (IPV) against pregnant women adversely impacts women’s and infants’ health. This study aims to provide longitudinal evidence regarding how pregnant women’s exposure to IPV changes over time. Additionally, we examine the risk and protective factors associated with these changes. In total, 340 pregnant women were recruited from an antenatal clinic in Hong Kong. IPV experiences and health conditions were assessed at pregnancy and at both 4 weeks and 3 years after childbirth. The women also reported adverse childhood experiences (ACEs), their family support, and perceived partner involvement. We found IPV prevalence among the study sample decreased from 22.9% before pregnancy to 13.5% during pregnancy, 14.7% at 4 weeks after childbirth, and 11.8% at 3 years after childbirth. We further found three types of IPV: 11.8% of women had a violent relationship (VR) persistently over time from pregnancy to 3 years after childbirth, 20.6% experienced decreased IPV (DVR), and 67.6% reported a nonviolent relationship (NVR) throughout the study period. VRs were associated with more severe mental health problems and higher ACEs. Family support and partner involvement may be protective factors for decreased IPV. Our present findings highlight the importance of identifying different IPV types over time to provide targeted intervention to the most vulnerable groups

    The association between intimate partner violence against women and newborn telomere length

    Get PDF
    Intimate partner violence (IPV) against women negatively impacts infant health. However, its impact on infant’s biology, in particular on telomere length (TL) is unknown. The aim of this study was to examine the association between IPV against women before childbirth and cord blood TL in their newborn. A total of 774 pregnant women in the 20th–24th week of gestation were recruited at a public hospital in Hong Kong. The mothers’ exposure to IPV before childbirth, demographic characteristics, obstetric outcomes, health and mental health were measured at the time of recruitment and 4 weeks after childbirth. Umbilical cord blood was collected by midwives at the time of delivery. The newborn TL was quantified using quantitative PCR method and expressed in T/S ratio (the ratio of telomere repeat copy numbers to single-copy gene numbers). After adjusting for a number of confounding variables, the mothers’ exposure to any IPV before childbirth (β = −0.08, 95% CI = −0.14, −0.01) was associated with shorter TL. Specifically, psychological abuse against women before childbirth (β = −0.08, 95% CI = −0.15, −0.02) and sexual abuse against women before childbirth (β = −0.22, 95% CI = −0.43 to −0.01) were significantly associated with reduced newborn TL. This study is the first to provide evidence of an association between IPV against women before childbirth and TL shortening in their newborns. Through TL- dependent transcription and epigenetic mechanisms, our finding suggests maternal exposure to IPV may exert a life-long impact on the offspring’s health

    School Closure and Mitigation of Pandemic (H1N1) 2009, Hong Kong

    Get PDF
    In Hong Kong, kindergartens and primary schools were closed when local transmission of pandemic (H1N1) 2009 was identified. Secondary schools closed for summer vacation shortly afterwards. By fitting a model of reporting and transmission to case data, we estimated that transmission was reduced ≈25% when secondary schools closed

    Stripes and holes in a two-dimensional model of spinless fermions and hardcore bosons

    Full text link
    We consider a Hubbard-like model of strongly-interacting spinless fermions and hardcore bosons on a square lattice, such that nearest neighbor occupation is forbidden. Stripes (lines of holes across the lattice forming antiphase walls between ordered domains) are a favorable way to dope this system below half-filling. The problem of a single stripe can be mapped to a spin-1/2 chain, which allows understanding of its elementary excitations and calculation of the stripe's effective mass for transverse vibrations. Using Lanczos exact diagonalization, we investigate the excitation gap and dispersion of a hole on a stripe, and the interaction of two holes. We also study the interaction of two, three, and four stripes, finding that they repel, and the interaction energy decays with stripe separation as if they are hardcore particles moving in one (transverse) direction. To determine the stability of an array of stripes against phase separation into particle-rich phase and hole-rich liquid, we evaluate the liquid's equation of state, finding the stripe-array is not stable for bosons but is possibly stable for fermions.Comment: 24 pages, 18 figure
    corecore