316 research outputs found

    How Will You Get Information You Need in a Zombie Apocalypse?

    Get PDF
    Zombification in the form of neoliberalism has significantly infected our libraries and the information chain, placing the world’s intellectual output at risk. Disaster planning will also be investigated as a response in the information chain to the metaphor of a zombie apocalypse

    Incorporating Individual and Collective Ethics into Phase I Cancer Trial Designs

    Full text link
    A general framework is proposed for Bayesian model-based designs of Phase I cancer trials, in which a general criterion for coherence (Cheung, 2005) of a design is also developed. This framework can incorporate both "individual" and "collective" ethics into the design of the trial. We propose a new design which minimizes a risk function composed of two terms, with one representing the individual risk of the current dose and the other representing the collective risk. The performance of this design, which is measured in terms of the accuracy of the estimated target dose at the end of the trial, the toxicity and overdose rates, and certain loss functions reflecting the individual and collective ethics, is studied and compared with existing Bayesian model-based designs and is shown to have better performance than existing designs

    Contextual Bandits in a Survey Experiment on Charitable Giving: Within-Experiment Outcomes versus Policy Learning

    Full text link
    We design and implement an adaptive experiment (a ``contextual bandit'') to learn a targeted treatment assignment policy, where the goal is to use a participant's survey responses to determine which charity to expose them to in a donation solicitation. The design balances two competing objectives: optimizing the outcomes for the subjects in the experiment (``cumulative regret minimization'') and gathering data that will be most useful for policy learning, that is, for learning an assignment rule that will maximize welfare if used after the experiment (``simple regret minimization''). We evaluate alternative experimental designs by collecting pilot data and then conducting a simulation study. Next, we implement our selected algorithm. Finally, we perform a second simulation study anchored to the collected data that evaluates the benefits of the algorithm we chose. Our first result is that the value of a learned policy in this setting is higher when data is collected via a uniform randomization rather than collected adaptively using standard cumulative regret minimization or policy learning algorithms. We propose a simple heuristic for adaptive experimentation that improves upon uniform randomization from the perspective of policy learning at the expense of increasing cumulative regret relative to alternative bandit algorithms. The heuristic modifies an existing contextual bandit algorithm by (i) imposing a lower bound on assignment probabilities that decay slowly so that no arm is discarded too quickly, and (ii) after adaptively collecting data, restricting policy learning to select from arms where sufficient data has been gathered

    Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations.

    Get PDF
    Despite aggressive peri-operative antibiotic treatments, up to 10% of patients undergoing instrumented spinal surgery develop an infection. Like most implant-associated infections, spinal infections persist through colonization and biofilm formation on spinal instrumentation, which can include metal screws and rods for fixation and an intervertebral cage commonly comprised of polyether ether ketone (PEEK). We have designed a PEEK antibiotic reservoir that would clip to the metal fixation rod and that would achieve slow antibiotic release over several days, followed by a bolus release of antibiotics triggered by ultrasound (US) rupture of a reservoir membrane. We have found using human physiological fluid (synovial fluid), that higher levels (100–500 μg) of vancomycin are required to achieve a marked reduction in adherent bacteria vs. that seen in the common bacterial medium, trypticase soy broth. To achieve these levels of release, we applied a polylactic acid coating to a porous PEEK puck, which exhibited both slow and US-triggered release. This design was further refined to a one-hole or two-hole cylindrical PEEK reservoir that can clip onto a spinal rod for clinical use. Short-term release of high levels of antibiotic (340 ± 168 μg), followed by US-triggered release was measured (7420 ± 2992 μg at 48 h). These levels are sufficient to prevent adhesion of Staphylococcus aureus to implant materials. This study demonstrates the feasibility of an US-mediated antibiotic delivery device, which could be a potent weapon against spinal surgical site infection. Statement of Significance: Spinal surgical sites are prone to bacterial colonization, due to presence of instrumentation, long surgical times, and the surgical creation of a dead space (≥5 cm 3 ) that is filled with wound exudate. Accordingly, it is critical that new approaches are developed to prevent bacterial colonization of spinal implants, especially as neither bulk release systems nor controlled release systems are available for the spine. This new device uses non-invasive ultrasound (US) to trigger bulk release of supra-therapeutic doses of antibiotics from materials commonly used in existing surgical implants. Thus, our new delivery system satisfies this critical need to eradicate surviving bacteria, prevent resistance, and markedly lower spinal infection rates

    Electromagnetic Wave Theory and Remote Sensing

    Get PDF
    Contains reports on seven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS82-03390)Schlumberger-Doll Research CenterNational Aeronautics and Space Administration (Contract NAG5-141)National Aeronautics and Space Administration (Contract NAS5-26861)National Aeronautics and Space Administration (Contract NAG5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258
    • …
    corecore