3 research outputs found
Guidelines for interpretation of 16S rRNA gene sequence-based results for identification of medically important aerobic Gram-positive bacteria
This study is believed to be the first to provide guidelines for facilitating interpretation of results based on full and 527 bp 16S rRNA gene sequencing and MicroSeq databases used for identifying medically important aerobic Gram-positive bacteria. Overall, full and 527 bp 16S rRNA gene sequencing can identify 24 and 40% of medically important Gram-positive cocci (GPC), and 21 and 34% of medically important Gram-positive rods (GPR) confidently to the species level, whereas the full-MicroSeq and 500-MicroSeq databases can identify 15 and 34% of medically important GPC and 14 and 25% of medically important GPR confidently to the species level. Among staphylococci, streptococci, enterococci, mycobacteria, corynebacteria, nocardia and members of Bacillus and related taxa (Paenibacillus, Brevibacillus, Geobacillus and Virgibacillus), the methods and databases are least useful for identification of staphylococci and nocardia. Only 0-2 and 2-13% of staphylococci, and 0 and 0-10% of nocardia, can be confidently and doubtfully identified, respectively. However, these methods and databases are most useful for identification of Bacillus and related taxa, with 36-56 and 11-14% of Bacillus and related taxa confidently and doubtfully identified, respectively. A total of 15 medically important GPC and 18 medically important GPR that should be confidently identified by full 16S rRNA gene sequencing are not included in the full-MicroSeq database. A total of 9 medically important GPC and 21 medically important GPR that should be confidently identified by 527 bp 16S rRNA gene sequencing are not included in the 500-MicroSeq database. 16S rRNA gene sequence results of Gram-positive bacteria should be interpreted with basic phenotypic tests results. Additional biochemical tests or sequencing of additional gene loci are often required for definitive identification. To improve the usefulness of the MicroSeq databases, bacterial species that can be confidently identified by 16S rRNA gene sequencing but are not found in the MicroSeq databases should be included. © 2009 SGM.link_to_OA_fulltex
Low back pain in older adults:risk factors, management options and future directions
Abstract
Low back pain (LBP) is one of the major disabling health conditions among older adults aged 60 years or older. While most causes of LBP among older adults are non-specific and self-limiting, seniors are prone to develop certain LBP pathologies and/or chronic LBP given their age-related physical and psychosocial changes. Unfortunately, no review has previously summarized/discussed various factors that may affect the effective LBP management among older adults. Accordingly, the objectives of the current narrative review were to comprehensively summarize common causes and risk factors (modifiable and non-modifiable) of developing severe/chronic LBP in older adults, to highlight specific issues in assessing and treating seniors with LBP, and to discuss future research directions. Existing evidence suggests that prevalence rates of severe and chronic LBP increase with older age. As compared to working-age adults, older adults are more likely to develop certain LBP pathologies (e.g., osteoporotic vertebral fractures, tumors, spinal infection, and lumbar spinal stenosis). Importantly, various age-related physical, psychological, and mental changes (e.g., spinal degeneration, comorbidities, physical inactivity, age-related changes in central pain processing, and dementia), as well as multiple risk factors (e.g., genetic, gender, and ethnicity), may affect the prognosis and management of LBP in older adults. Collectively, by understanding the impacts of various factors on the assessment and treatment of older adults with LBP, both clinicians and researchers can work toward the direction of more cost-effective and personalized LBP management for older people