5 research outputs found

    Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines

    No full text
    The Consortium for Mouse Cell Line Authentication was formed to validate Short Tandem Repeat (STR) markers for intraspecies identification of mouse cell lines. The STR profiling method is a multiplex polymerase chain reaction (PCR) assay comprised of primers targeting 19 mouse STR markers and two human STR markers (for interspecies contamination screening). The goals of the Consortium were to perform an interlaboratory study to-(1) validate the mouse STR markers to uniquely identify mouse cell lines (intraspecies identification), (2) to provide a public database of mouse cell lines with the National Institute of Standards and Technology (NIST)-validated mouse STR profiles, and (3) to publish the results of the interlaboratory study. The interlaboratory study was an international effort that consisted of 12 participating laboratories representing institutions from academia, industry, biological resource centers, and government. The study was based on 50 of the most commonly used mouse cell lines obtained from the American Type Culture Collection (ATCC). Of the 50 mouse cell lines, 18 had unique STR profiles that were 100% concordant (match) among all Consortium laboratory members, and the remaining 32 cell lines had discordance that was resolved readily and led to improvement of the assay. The discordance was due to low signal and interpretation issues involving artifacts and genotyping errors. Although the total number of discordant STR profiles was relatively high in this study, the percent of labs agreeing on allele calls among the discordant samples was above 92%. The STR profiles, including electropherogram images, for NIST-validated mouse cell lines will be published on the NCBI BioSample Database (https://www.ncbi.nlm.nih.gov/biosample/). Overall, the interlaboratory study showed that the multiplex PCR method using 18 of the 19 mouse STR markers is capable of discriminating at the intraspecies level between mouse cell lines. Further studies are ongoing to refine the assay including (1) development of an allelic ladder for improving the accuracy of allele calling and (2) integration of stutter filters to identify true stutter.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label,parallel-group, multicentre trial

    Get PDF
    Background The benefi t of CT coronary angiography (CTCA) in patients presenting with stable chest pain has not been systematically studied. We aimed to assess the eff ect of CTCA on the diagnosis, management, and outcome of patients referred to the cardiology clinic with suspected angina due to coronary heart disease. Methods In this prospective open-label, parallel-group, multicentre trial, we recruited patients aged 18–75 years referred for the assessment of suspected angina due to coronary heart disease from 12 cardiology chest pain clinics across Scotland. We randomly assigned (1:1) participants to standard care plus CTCA or standard care alone. Randomisation was done with a web-based service to ensure allocation concealment. The primary endpoint was certainty of the diagnosis of angina secondary to coronary heart disease at 6 weeks. All analyses were intention to treat, and patients were analysed in the group they were allocated to, irrespective of compliance with scanning. This study is registered with ClinicalTrials.gov, number NCT01149590. Findings Between Nov 18, 2010, and Sept 24, 2014, we randomly assigned 4146 (42%) of 9849 patients who had been referred for assessment of suspected angina due to coronary heart disease. 47% of participants had a baseline clinic diagnosis of coronary heart disease and 36% had angina due to coronary heart disease. At 6 weeks, CTCA reclassifi ed the diagnosis of coronary heart disease in 558 (27%) patients and the diagnosis of angina due to coronary heart disease in 481 (23%) patients (standard care 22 [1%] and 23 [1%]; p<0·0001). Although both the certainty (relative risk [RR] 2·56, 95% CI 2·33–2·79; p<0·0001) and frequency of coronary heart disease increased (1·09, 1·02–1·17; p=0·0172), the certainty increased (1·79, 1·62–1·96; p<0·0001) and frequency seemed to decrease (0·93, 0·85–1·02; p=0·1289) for the diagnosis of angina due to coronary heart disease. This changed planned investigations (15% vs 1%; p<0·0001) and treatments (23% vs 5%; p<0·0001) but did not aff ect 6-week symptom severity or subsequent admittances to hospital for chest pain. After 1·7 years, CTCA was associated with a 38% reduction in fatal and nonfatal myocardial infarction (26 vs 42, HR 0·62, 95% CI 0·38–1·01; p=0·0527), but this was not signifi cant. Interpretation In patients with suspected angina due to coronary heart disease, CTCA clarifi es the diagnosis, enables targeting of interventions, and might reduce the future risk of myocardial infarction. Funding The Chief Scientist Offi ce of the Scottish Government Health and Social Care Directorates funded the trial with supplementary awards from Edinburgh and Lothian’s Health Foundation Trust and the Heart Diseases Research Fund

    Role of multidetector computed tomography in the diagnosis and management of patients attending the rapid access chest pain clinic, The Scottish computed tomography of the heart (SCOT-HEART) trial:study protocol for randomized controlled trial

    Get PDF
    &lt;p&gt;Background: Rapid access chest pain clinics have facilitated the early diagnosis and treatment of patients with coronary heart disease and angina. Despite this important service provision, coronary heart disease continues to be under-diagnosed and many patients are left untreated and at risk. Recent advances in imaging technology have now led to the widespread use of noninvasive computed tomography, which can be used to measure coronary artery calcium scores and perform coronary angiography in one examination. However, this technology has not been robustly evaluated in its application to the clinic.&lt;/p&gt; &lt;p&gt;Methods/design: The SCOT-HEART study is an open parallel group prospective multicentre randomized controlled trial of 4,138 patients attending the rapid access chest pain clinic for evaluation of suspected cardiac chest pain. Following clinical consultation, participants will be approached and randomized 1:1 to receive standard care or standard care plus ≥64-multidetector computed tomography coronary angiography and coronary calcium score. Randomization will be conducted using a web-based system to ensure allocation concealment and will incorporate minimization. The primary endpoint of the study will be the proportion of patients diagnosed with angina pectoris secondary to coronary heart disease at 6 weeks. Secondary endpoints will include the assessment of subsequent symptoms, diagnosis, investigation and treatment. In addition, long-term health outcomes, safety endpoints, such as radiation dose, and health economic endpoints will be assessed. Assuming a clinic rate of 27.0% for the diagnosis of angina pectoris due to coronary heart disease, we will need to recruit 2,069 patients per group to detect an absolute increase of 4.0% in the rate of diagnosis at 80% power and a two-sided P value of 0.05. The SCOT-HEART study is currently recruiting participants and expects to report in 2014.&lt;/p&gt; &lt;p&gt;Discussion: This is the first study to look at the implementation of computed tomography in the patient care pathway that is outcome focused. This study will have major implications for the management of patients with cardiovascular disease.&lt;/p&gt
    corecore