5 research outputs found

    Investigating effort prediction of web-based applications using CBR on the ISBSG dataset

    Get PDF
    As web-based applications become more popular and more sophisticated, so does the requirement for early accurate estimates of the effort required to build such systems. Case-based reasoning (CBR) has been shown to be a reasonably effective estimation strategy, although it has not been widely explored in the context of web applications. This paper reports on a study carried out on a subset of the ISBSG dataset to examine the optimal number of analogies that should be used in making a prediction. The results show that it is not possible to select such a value with confidence, and that, in common with other findings in different domains, the effectiveness of CBR is hampered by other factors including the characteristics of the underlying dataset (such as the spread of data and presence of outliers) and the calculation employed to evaluate the distance function (in particular, the treatment of numeric and categorical data)

    Deep learning-based growth prediction system: A use case of china agriculture

    Get PDF
    \ua9 2021 by the authors. Licensee MDPI, Basel, Switzerland. Agricultural advancements have significantly impacted people’s lives and their surround-ings in recent years. The insufficient knowledge of the whole agricultural production system and conventional ways of irrigation have limited agricultural yields in the past. The remote sensing innovations recently implemented in agriculture have dramatically revolutionized production efficiency by offering unparalleled opportunities for convenient, versatile, and quick collection of land images to collect critical details on the crop’s conditions. These innovations have enabled automated data collection, simulation, and interpretation based on crop analytics facilitated by deep learning techniques. This paper aims to reveal the transformative patterns of old Chinese agrarian development and fruit production by focusing on the major crop production (from 1980 to 2050) taking into account various forms of data from fruit production (e.g., apples, bananas, citrus fruits, pears, and grapes). In this study, we used production data for different fruits grown in China to predict the future production of these fruits. The study employs deep neural networks to project future fruit production based on the statistics issued by China’s National Bureau of Statistics on the total fruit growth output for this period. The proposed method exhibits encouraging results with an accuracy of 95.56% calculating by accuracy formula based on fruit production variation. Authors further provide recommendations on the AGR-DL (agricultural deep learning) method being helpful for developing countries. The results suggest that the agricultural development in China is acceptable but demands more improvement and government needs to prioritize expanding the fruit production by establishing new strategies for cultivators to boost their performance

    Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications

    Get PDF
    \ua9 2021 Umair Muneer Butt et al. The remarkable advancements in biotechnology and public healthcare infrastructures have led to a momentous production of critical and sensitive healthcare data. By applying intelligent data analysis techniques, many interesting patterns are identified for the early and onset detection and prevention of several fatal diseases. Diabetes mellitus is an extremely life-threatening disease because it contributes to other lethal diseases, i.e., heart, kidney, and nerve damage. In this paper, a machine learning based approach has been proposed for the classification, early-stage identification, and prediction of diabetes. Furthermore, it also presents an IoT-based hypothetical diabetes monitoring system for a healthy and affected person to monitor his blood glucose (BG) level. For diabetes classification, three different classifiers have been employed, i.e., random forest (RF), multilayer perceptron (MLP), and logistic regression (LR). For predictive analysis, we have employed long short-term memory (LSTM), moving averages (MA), and linear regression (LR). For experimental evaluation, a benchmark PIMA Indian Diabetes dataset is used. During the analysis, it is observed that MLP outperforms other classifiers with 86.08% of accuracy and LSTM improves the significant prediction with 87.26% accuracy of diabetes. Moreover, a comparative analysis of the proposed approach is also performed with existing state-of-the-art techniques, demonstrating the adaptability of the proposed approach in many public healthcare applications

    Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review

    Get PDF
    \ua9 2020 Institute of Electrical and Electronics Engineers Inc. All rights reserved. The primary objective of this study is to accumulate, summarize, and evaluate the state-ofthe-art for spatiooral crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author\u27s knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatiooral crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications

    Spatio-Temporal Crime Predictions by Leveraging Artificial Intelligence for Citizens Security in Smart Cities

    Get PDF
    \ua9 2013 IEEE. Smart city infrastructure has a significant impact on improving the quality of humans life. However, a substantial increase in the urban population from the last few years poses challenges related to resource management, safety, and security. To ensure the safety and security in the smart city environment, this paper presents a novel approach by empowering the authorities to better visualize the threats, by identifying and predicting the highly-reported crime zones in the smart city. To this end, it first investigates the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) to detect the hot-spots that have a higher risk of crime occurrence. Second, for crime prediction, Seasonal Auto-Regressive Integrated Moving Average (SARIMA) is exploited in each dense crime region to predict the number of crime incidents in the future with spatial and temporal information. The proposed HDBSCAN and SARIMA based crime prediction model is evaluated on ten years of crime data (2008-2017) for New York City (NYC). The accuracy of the model is measured by considering different time scenarios such as the year-wise, (i.e., for each year), and for the total considered duration of ten years using an 80:20 ratio. The 80% of data was used for training and 20% for testing. The proposed approach outperforms with an average Mean Absolute Error (MAE) of 11.47 as compared to the highest scoring DBSCAN based method with MAE 27.03
    corecore