70 research outputs found

    Gamma ray line production from cosmic ray spallation reactions

    Get PDF
    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions

    Implications of cross section errors for cosmic ray propagation

    Get PDF
    Errors in nuclear interaction cross sections are the single most important limitation on the analysis of cosmic ray composition data. At the 18th International Cosmic Ray Conference, the potential importance of correlations in cross section errors in determining cosmic ray source abundances was demonstrated. In this paper the magnitude of cross section error correlation is estimated. Analysis suggests that cross section errors are essentially uncorrelated for nuclei with Z 29 and that the actual errors may be less than the nominal 35%

    Calculation of improved spallation cross sections

    Get PDF
    Several research groups have recently carried out highly precise measurements (to about 10 percent) of high-energy nuclear spallation cross sections. These measurements, above 5 GeV, cover a broad range of elements: V, Fe, Cu, Ag, Ta and Au. Even the small cross sections far off the peak of the isotopic distribution curves have been measured. The semiempirical calculations are compared with the measured values. Preliminary comparisons indicate that the parameters of our spallation relations (Silberberg and Tsao, 1973) for atomic numbers 20 to 83 need modifications, e.g. a reduced slope of the mass yield distribution, broader isotopic distributions, and a shift of the isotopic distribution toward the neutron-deficient side. The required modifications are negligible near Fe and Cu, but increase with increasing target mass

    Propagation of cosmic rays and new evidence for distributed acceleration

    Get PDF
    The origin and propagation of cosmic rays in terms of conventional and supplementary newer assumptions were explored. Cosmic rays are considered to be accelerated by supernoava shock waves and to traverse clouds in the source region. After rigidity-dependent escape from these clouds into interstellar space, cosmic rays are further accelerated by the weakened shocks of old supernova remnants and then pass through additional material. The distributed acceleration hypothesis is discussed with emphasis on recent data on the abundances of cosmic-ray isotopes of N above 1 GeV/u and of He near 6 GeV/u

    On the response of detectors in classical electromagnetic backgrounds

    Full text link
    I study the response of a detector that is coupled non-linearly to a quantized complex scalar field in different types of classical electromagnetic backgrounds. Assuming that the quantum field is in the vacuum state, I show that, when in {\it inertial} motion, the detector responds {\it only} when the electromagnetic background produces particles. However, I find that the response of the detector is {\it not} proportional to the number of particles produced by the background.Comment: 10 pages, LaTeX, Final versio

    Considerations on the Unruh Effect: Causality and Regularization

    Full text link
    This article is motivated by the observation, that calculations of the Unruh effect based on idealized particle detectors are usually made in a way that involves integrations along the {\em entire} detector trajectory up to the infinitely remote {\em future}. We derive an expression which allows time-dependence of the detector response in the case of a non-stationary trajectory and conforms more explicitely to the principle of causality, namely that the response at a given instant of time depends only on the detectors {\em past} movements. On trying to reproduce the thermal Unruh spectrum we are led to an unphysical result, which we trace down to the use of the standard regularization t\to t-i\eps of the correlation function. By consistently employing a rigid detector of finite extension, we are led to a different regularization which works fine with our causal response function.Comment: 19 pages, 2 figures, v2: some minor change

    Response of finite-time particle detectors in non-inertial frames and curved spacetime

    Get PDF
    The response of the Unruh-DeWitt type monopole detectors which were coupled to the quantum field only for a finite proper time interval is studied for inertial and accelerated trajectories, in the Minkowski vacuum in (3+1) dimensions. Such a detector will respond even while on an inertial trajctory due to the transient effects. Further the response will also depend on the manner in which the detector is switched on and off. We consider the response in the case of smooth as well as abrupt switching of the detector. The former case is achieved with the aid of smooth window functions whose width, TT, determines the effective time scale for which the detector is coupled to the field. We obtain a general formula for the response of the detector when a window function is specified, and work out the response in detail for the case of gaussian and exponential window functions. A detailed discussion of both T0T \rightarrow 0 and TT \rightarrow \infty limits are given and several subtlities in the limiting procedure are clarified. The analysis is extended for detector responses in Schwarzschild and de-Sitter spacetimes in (1+1) dimensions.Comment: 29 pages, normal TeX, figures appended as postscript file, IUCAA Preprint # 23/9

    Vacuum polarization on the spinning circle

    Get PDF
    Vacuum polarization of a massive scalar field in the background of a two-dimensional version of a spinning cosmic string is investigated. It is shown that when the `radius of the universe' is such that spacetime is globally hyperbolic the vacuum fluctuations are well behaved, diverging though on the `chronology horizon'. Naive use of the formulae when spacetime is nonglobally hyperbolic leads to unphysical results. It is also pointed out that the set of normal modes used previously in the literature to address the problem gives rise to two-point functions which do not have a Hadamard form, and therefore are not physically acceptable. Such normal modes correspond to a locally (but not globally) Minkowski time, which appears to be at first sight a natural choice of time to implement quantization.Comment: 3 pages, no figures, REVTeX4, published versio

    Particle detectors, geodesic motion, and the equivalence principle

    Full text link
    It is shown that quantum particle detectors are not reliable probes of spacetime structure. In particular, they fail to distinguish between inertial and non-inertial motion in a general spacetime. To prove this, we consider detectors undergoing circular motion in an arbitrary static spherically symmetric spacetime, and give a necessary and sufficient condition for the response function to vanish when the field is in the static vacuum state. By examining two particular cases, we show that there is no relation, in general, between the vanishing of the response function and the fact that the detector motion is, or is not, geodesic. In static asymptotically flat spacetimes, however, all rotating detectors are excited in the static vacuum. Thus, in this particular case the static vacuum appears to be associated with a non-rotating frame. The implications of these results for the equivalence principle are considered. In particular, we discuss how to properly formulate the principle for particle detectors, and show that it is satisfied.Comment: 14 pages. Revised version, with corrections; added two references. Accepted for publication in Class. Quantum Gra

    On the physical meaning of Fermi coordinates

    Full text link
    (Some Latex problems should be removed in this version) Fermi coordinates (FC) are supposed to be the natural extension of Cartesian coordinates for an arbitrary moving observer in curved space-time. Since their construction cannot be done on the whole space and even not in the whole past of the observer we examine which construction principles are responsible for this effect and how they may be modified. One proposal for a modification is made and applied to the observer with constant acceleration in the two and four dimensional Minkowski space. The two dimensional case has some surprising similarities to Kruskal space which generalize those found by Rindler for the outer region of Kruskal space and the Rindler wedge. In perturbational approaches the modification leads also to different predictions for certain physical systems. As an example we consider atomic interferometry and derive the deviation of the acceleration-induced phase shift from the standard result in Fermi coordinates.Comment: 11 pages, KONS-RGKU-94/02 (Latex
    corecore