75 research outputs found
A simple atomistic model for the simulation of the gel phase of lipid bilayers
In this paper we present the results of a large-scale numerical investigation
of structural properties of a model of cell membrane, simulated as a bilayer of
flexible molecules in vacuum. The study was performed by carrying out extensive
Molecular Dynamics simulations, in the (NVE) micro-canonical ensemble, of two
systems of different sizes (2x32 and 2x256 molecules), over a fairly large set
of temperatures and densities, using parallel platforms and more standard
serial computers. Depending on the dimension of the system, the dynamics was
followed for physical times that go from few hundred of picoseconds for the
largest system to 5--10 nanoseconds for the smallest one. We find that the
bilayer remains stable even in the absence of water and neglecting Coulomb
interactions in the whole range of temperatures and densities we have
investigated. The extension of the region of physical parameters that we have
explored has allowed us to study significant points in the phase diagram of the
bilayer and to expose marked structural changes as density and temperature are
varied, which are interpreted as the system passing from a crystal to a gel
phase.Comment: 41 pages, 13 figure
Parallel computing and molecular dynamics of biological membranes
In this talk I discuss the general question of the portability of Molecular
Dynamics codes for diffusive systems on parallel computers of the APE family.
The intrinsic single precision arithmetics of the today available APE platforms
does not seem to affect the numerical accuracy of the simulations, while the
absence of integer addressing from CPU to individual nodes puts strong
constraints on the possible programming strategies. Liquids can be very
satisfactorily simulated using the "systolic" method. For more complex systems,
like the biological ones at which we are ultimately interested in, the "domain
decomposition" approach is best suited to beat the quadratic growth of the
inter-molecular computational time with the number of elementary components of
the system. The promising perspectives of using this strategy for extensive
simulations of lipid bilayers are briefly reviewed.Comment: 4 pages LaTeX, 2 figures included, espcrc2.sty require
X-ray radiation from ions with K-shell vacancies
Abstract New types of space resolved X-ray spectra produced in light matter experiments with high intensity lasers have been investigated experimentally and theoretically. This type of spectra is characterised by the disappearance of distinct resonance line emission and the appearance of very broad emission structures due to the dielectronic satellite transitions associated to the resonance lines. Atomic data calculations have shown, that rather exotic states with K-shell vacancies are involved. For quantitative spectra interpretation we developed a model for dielectronic satellite accumulation (DSA-model) in cold dense optically thick plasmas which are tested by rigorous comparison with space resolved spectra from ns-lasers. In experiments with laser intensities up to 10 19 W/cm 2 focused into nitrogen gas targets, hollow ion configurations are observed by means of soft X-ray spectroscopy. It is shown that transitions in hollow ions can be used for plasma diagnostic. The determination of the electron temperature in the long lasting recombining regime is demonstrated. In Light-matter interaction experiments with extremely high contrast (up to 10 10 ) short pulse (400 fs) lasers electron densities of n e ≈3×10 23 cm −3 at temperatures between kT e =200–300 eV have been determined by means of spectral simulations developed previously for ns-laser produced plasmas. Expansion velocities are determined analysing asymmetric optically thick line emission. Further, the results are checked by observing the spectral windows involving the region about the He α -line and the region from the He β -line to the He-like continuum. Finally, plasmas of solid density are characteristic in experiments with heavy ion beams heating massive targets. We report the first spectroscopic investigations in plasmas of this type with results on solid neon heated by Ar-ions. A spectroscopic method for the determination of the electron temperature in extreme optically thick plasmas is developed
x ray imaging of bio medical samples using laser plasma based x ray sources and lif detector
This contribution to ECPD2019 is dedicated to the memory of Anatoly Faenov. During a period of approximately thirteen years 1994–2006, Anatoly and his wife Tatiana Pikuz (simply "Tania" for friends), accepting the frequent invitations of the National Institute for Nuclear Physics (INFN) and of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), cooperated with many Italian research laboratories dedicated to EUV and soft X-ray generation, spread in different towns (L'Aquila, Frascati, Milano, Padova, Pisa, Roma, etc.). In spite of the fact that they could stay in Italy only about one or two months per year, their activity was so intense that more than 50 peer- reviewed publications were generated from their experimental and theoretical work (just considering only the results obtained at L'Aquila and Tor Vergata—Rome Universities and at the ENEA Research Center of Frascati), without mentioning the cultural atmosphere that they stimulated in the field of Science and Humanity. The numerous experimental spectra obtained at ENEA by means of their spherically bent mica spectrometers, together with the corresponding theoretical simulations performed in Moscow, allowed to study the changing role of different excitations mechanisms for various plasma conditions, and to characterize at best the ENEA laser-plasma source for different applications: polychromatic and monochromatic micro-radiography of dried biological samples at 1 keV, soft X-ray contact microscopy (SXCM) of living cells in the water-window spectral region, spectroscopy of hollow atoms, etc. In this memorial paper, the main results of biological samples imaging on lithium fluoride (LiF) detectors, obtained with the ENEA and Tor Vergata University laser-plasma sources, are presented. In particular, the improvement of the micro-radiography and of the SXCM techniques obtained after moving from photoresist detectors and photographic films to lithium fluoride (LiF) detectors are discussed, for both dried and wet biological samples
Theoretical study of self-sustained discharge pumped XeCl lasers
Submitted to IEEE J. Quant. ElectrSIGLEITItal
- …