2 research outputs found

    Design, synthesis, and biological evaluation of new thalidomide–donepezil hybrids as neuroprotective agents targeting cholinesterases and neuroinflammation

    Get PDF
    A new series of eight multifunctional thalidomide–donepezil hybrids were synthesized based on the multi target-directed ligand strategy and evaluated as potential neuroprotective, cholinesterase inhibitors and anti neuroinflammatory agents against neurodegenerative diseases. A molecular hybridization approach was used for structural design by combining the N-benzylpiperidine pharmacophore of donepezil and the isoindoline 1,3-dione fragment from the thalidomide structure. The most promising compound, PQM-189 (3g), showed good AChE inhibitory activity with an IC50 value of 3.15 μM, which was predicted by docking studies as interacting with the enzyme in the same orientation observed in the AChE–donepezil complex and a similar profile of interaction. Additionally, compound 3g significantly decreased iNOS and IL-1β levels by 43% and 39%, respectively, after 24 h of incubation with lipopolysaccharide. In vivo data confirmed the ability of 3g to prevent locomotor impairment and changes in feeding behavior elicited by lipopolysaccharide. Moreover, the PAMPA assay evidenced adequate blood–brain barrier and gastrointestinal tract permeabilities with an Fa value of 69.8%. Altogether, these biological data suggest that compound 3g can treat the inflammatory process and oxidative stress resulting from the overexpression of iNOS and therefore the increase in reactive nitrogen species, and regulate the release of pro-inflammatory cytokines such as IL-1β. In this regard, compound PQM-189 (3g) was revealed to be a promising neuroprotective and anti-neuroinflammatory agent with an innovative thalidomide–donepezil-based hybrid molecular architectur

    Synthesis and biological evaluation of 4-hydroxy-methylpiperidinyl-N-benzyl-acylarylhydrazone hybrids designed as novel multifunctional drug candidates for Alzheimer’s disease

    No full text
    The search for new drug candidates against Alzheimer’s disease (AD) remains a complex challenge for medicinal chemists due to its multifactorial pathogenesis and incompletely understood physiopathology. In this context, we have explored the molecular hybridization of pharmacophore structural fragments from known bioactive mol ecules, aiming to obtain a novel molecular architecture in new chemical entities capable of concomitantly interacting with multiple targets in a so-called multi-target directed ligands (MTDLs) approach. This work de scribes the synthesis of 4-hydroxymethyl)piperidine-N-benzyl-acyl-hydrazone derivatives 5a-l, designed as novel MTDLs, showing improved multifunctional properties compared to the previously reported parent series of N benzyl-(3-hydroxy)piperidine-acyl-hydrazone derivatives 4. The new improved derivatives were studied in silico, regarding their mode of interaction with AChE enzyme, and in vitro, for evaluation of their effects on the se lective inhibition of cholinesterases, cellular antioxidant, and neuroprotective activities as their cytotoxicity in human neuroblastoma (SH-SY5Y) cells. Overall, compound PQM-181 (5 k) showed the best balanced selective and non-competitive inhibition of AChE (IC50 = 5.9 μM, SI > 5.1), with an additional antioxidant activity (IC50= 7.45 µM) against neuronal t-BOOH-induced oxidative stress and neuroprotective ability against neurotoxicity elicited by both t-BOOH and OAβ1-42, and a moderate ability to interfere in Aβ1-42 aggregates, with low cyto toxicity and good predictive druggability properties, suggesting a multifunctional pharmacological profile suitable for further drug development against AD
    corecore