228 research outputs found

    Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation.

    Get PDF
    The uterine expression of leukemia inhibitory factor (LIF) is essential for embryo implantation in the mouse. Here, we describe the expression of LIF, related members of this group of cytokines, oncostatin M and ciliary neurotrophic factor, and the LIF receptor beta and glycoprotein gp130 in normal human tissues and in the endometrium of fertile women. Our results show that LIF is the only one of these factors expressed at detectable levels in the endometrium of women of proven fertility. LIF expression is restricted to the endometrial glands during the secretory/postovulatory phase but is not present in the endometrium during the proliferative/preovulatory phase. The LIF receptor beta is expressed during the proliferative and secretory phases of the cycle and is restricted to the luminal epithelium. The associated signal-transducing component of the LIF receptor, gp130, is also expressed in both the luminal and glandular epithelium throughout the cycle. These results suggest that uterine expression of LIF in humans, like mice, may have a role in regulating embryo implantation, possibly through an autocrine/paracrine interaction between LIF and its receptor at the luminal epithelium

    Interleukin-33 modulates inflammation in endometriosis

    Get PDF
    Abstract Endometriosis is a debilitating condition that is categorized by the abnormal growth of endometrial tissue outside the uterus. Although the pathogenesis of this disease remains unknown, it is well established that endometriosis patients exhibit immune dysfunction. Interleukin (IL)-33 is a danger signal that is a critical regulator of chronic inflammation. Although plasma and peritoneal fluid levels of IL-33 have been associated with deep infiltrating endometriosis, its contribution to the disease pathophysiology is unknown. We investigated the role of IL-33 in the pathology of endometriosis using patient samples, cell lines and a syngeneic mouse model. We found that endometriotic lesions produce significantly higher levels of IL-33 compared to the endometrium of healthy, fertile controls. In vitro stimulation of endometrial epithelial, endothelial and endometriotic epithelial cells with IL-33 led to the production of pro-inflammatory and angiogenic cytokines. In a syngeneic mouse model of endometriosis, IL-33 injections caused systemic inflammation, which manifested as an increase in plasma pro-inflammatory cytokines compared to control mice. Furthermore, endometriotic lesions from IL-33 treated mice were highly vascularized and exhibited increased proliferation. Collectively, we provide convincing evidence that IL-33 perpetuates inflammation, angiogenesis and lesion proliferation, which are critical events in the lesion survival and progression of endometriosis

    Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation.

    Get PDF
    The uterine expression of leukemia inhibitory factor (LIF) is essential for embryo implantation in the mouse. Here, we describe the expression of LIF, related members of this group of cytokines, oncostatin M and ciliary neurotrophic factor, and the LIF receptor beta and glycoprotein gp130 in normal human tissues and in the endometrium of fertile women. Our results show that LIF is the only one of these factors expressed at detectable levels in the endometrium of women of proven fertility. LIF expression is restricted to the endometrial glands during the secretory/postovulatory phase but is not present in the endometrium during the proliferative/preovulatory phase. The LIF receptor beta is expressed during the proliferative and secretory phases of the cycle and is restricted to the luminal epithelium. The associated signal-transducing component of the LIF receptor, gp130, is also expressed in both the luminal and glandular epithelium throughout the cycle. These results suggest that uterine expression of LIF in humans, like mice, may have a role in regulating embryo implantation, possibly through an autocrine/paracrine interaction between LIF and its receptor at the luminal epithelium

    Hormone control and expression of androgen receptor coregulator MAGE-11 in human endometrium during the window of receptivity to embryo implantation

    Get PDF
    The androgen receptor (AR) is a ligand-activated transcription factor of the male and female reproductive tracts whose activity is modulated by coregulator binding. We recently identified melanoma antigen gene protein-11 (MAGE-11) of the MAGEA gene family that functions as an AR coregulator by binding the AR N-terminal FXXLF motif. Here we report that MAGE-11 is expressed in a temporal fashion in endometrium of normally cycling women. Highest levels of MAGE-11 mRNA and protein occur in the mid-secretory stage, coincident with the window of uterine receptivity to embryo implantation. Studies in human endometrial cell lines together with the hormone profile of the menstrual cycle and pattern of estrogen receptor-α expression in cycling endometrium suggest the rise in MAGE-11 mRNA results from down-regulation by estradiol during the proliferative phase and up-regulation by cyclic AMP signaling in the early and mid-secretory stage. In agreement with its coregulatory function, MAGE-11 localizes with AR in glandular epithelial cell nuclei in the mid-secretory stage. The increase in AR protein in the mid-secretory endometrium without an increase in AR mRNA suggests MAGE-11 stabilizes AR in glandular epithelial cell nuclei. This was supported by expression studies at low androgen levels indicating AR stabilization by MAGE-11 dependent on the AR N-terminal transactivation domain. The results suggest that MAGE-11 functions as a coregulator that increases AR transcriptional activity during the establishment of uterine receptivity in the human female

    Regulation and Function of C-Type Natriuretic Peptide (CNP) in Gonadotrope-Derived Cell Lines

    Get PDF
    C-type natriuretic peptide (CNP) is the most conserved member of the mammalian natriuretic peptide family, and is implicated in the endocrine regulation of growth, metabolism and reproduction. CNP is expressed throughout the body, but is particularly abundant in the central nervous system and anterior pituitary gland. Pituitary gonadotropes are regulated by pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus, to control reproductive function. GnRH and CNP reciprocally regulate their respective signalling pathways in αT3-1 gonadotrope cells, but effects of pulsatile GnRH stimulation on CNP expression has not been explored. Here, we examine the sensitivity of the natriuretic peptide system in LβT2 and αT3-1 gonadotrope cell lines to continuous and pulsatile GnRH stimulation, and investigate putative CNP target genes in gonadotropes. Multiplex RT-qPCR assays confirmed that primary mouse pituitary tissue express Nppc, Npr2 (encoding CNP and guanylyl cyclase B (GC-B), respectively) and Furin (a CNP processing enzyme), but failed to express transcripts for Nppa or Nppb (encoding ANP and BNP, respectively). Pulsatile, but not continuous, GnRH stimulation of LβT2 cells caused significant increases in Nppc and Npr2 expression within 4 h, but failed to alter natriuretic peptide gene expression in αT3-1 cells. CNP enhanced expression of cJun, Egr1, Nr5a1 and Nr0b1, within 8 h in LβT2 cells, but inhibited Nr5a1 expression in αT3-1 cells. Collectively, these data show the gonadotrope natriuretic peptide system is sensitive to pulsatile GnRH signalling, and gonadotrope transcription factors are putative CNP-target genes. Such findings represent additional mechanisms by which CNP may regulate reproductive function

    The RhoA Guanine Nucleotide Exchange Factor, LARG, Mediates ICAM-1-Dependent Mechanotransduction in Endothelial Cells To Stimulate Transendothelial Migration

    Get PDF
    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. Although much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared with ICAM-1 clustering alone. We have identified that leukemia-associated Rho guanine nucleotide exchange factor (LARG), also known as Rho GEF 12 (ARHGEF12) acts downstream of clustered ICAM-1 to increase RhoA activity, and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. To our knowledge, this is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes

    Resveratrol and Endometrium: A Closer Look at an Active Ingredient of Red Wine Using In Vivo and In Vitro Models

    Get PDF
    Resveratrol is a natural phytoestrogen with antiproliferative properties present in red wine, grapes, and berries. Published reports on the effects of resveratrol in human endometrial function are limited. The objective of this study was to investigate the expression of estrogen receptor α (ESR1), Ki-67 (a proliferative marker), aryl hydrocarbon receptor (AhR), and members of the cytochrome P450 superfamily of enzymes (CYP1A1 and CYP1B1) in an in vitro and vivo assay. Alkaline phosphatase assay of estrogenicity was used to compare estrogen activity of different concentrations of resveratrol to estradiol (E2) and diethylstilbestrol (DES), using Ishikawa cell culture. Immunohistochemical expression of ESR1 and Ki67, and reverse transcriptase polymerase chain reaction of AhR, CYP1A1, and CYP1B1 were analyzed from xenograft implants of human endometrial tissue in ovariectomized immunodeficient RAG-2-γ(c) mice, after 30 days of treatment with subcutaneous pellets of E2, E2 plus progesterone (P4), or E2 plus resveratrol (6, 30, or 60 mg) for 30 days. Compared to E2, resveratrol acted as an agonist and antagonist of estrogen in low and high concentrations, respectively, when combined with E2. Xenografts of human endometrial tissues in RAG-2 mice exhibited reduced expression of ESR1 and proliferative activity (Ki67) with 60 mg of resveratrol. This study suggests that resveratrol, at high doses, has the potential benefit to reduce proliferation of human endometrium through ESR1

    Serum estradiol/progesterone ratio on day of embryo transfer may predict reproductive outcome following controlled ovarian hyperstimulation and in vitro fertilization

    Get PDF
    BACKGROUND: To determine whether estradiol-to-progesterone (E(2)/P) ratios at the time of embryo transfer (ET) have an effect on implantation and pregnancy in IVF cycles. METHODS: 239 women consecutively treated by IVF or ICSI were retrospectively analyzed and early luteal serum E(2 )and P were measured on the day of ET. Transfer occurred after a variable in vitro culture period ranging from 4–7 days after ovulation induction (OI). Following ET, serum E(2)/P ratios were calculated for clinical pregnancies, preclinical abortions and non-coneption cycles. RESULTS: Receiver-operator curve analysis demonstrated that the E(2)/P ratio could differentiate between clinical pregnancies and non-pregnant cycles (area under the curve on OI +4 days = 0.70; 95% CI = 0.60–0.80; p = 0.003, on OI +5 days = 0.76; 95% CI = 0.64–0.88; p = 0.001, OI +7 days = 0.85; 95% CI = 0.75–0.96; p < 0.0001). CONCLUSION: These retrospective data may hold prognostic value regarding endometrial receptivity as reflected by E(2)/P measurements and may help improve IVF treatment outcome. Further prospective studies should be undertaken to confirm these obersveration

    Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors

    Get PDF
    Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of overlapping pathways in trophoblast-endometrial communication. In conclusion, trophoblast signals attract endometrial stromal cells, while PDGF-BB and HB-EGF, although not identified as trophoblast-derived, are local growth factors that may serve to fine-tune directed and non-directed migration at the implantation site
    • …
    corecore