4 research outputs found

    Nonfunctioning Pituitary Adenoma That Changed to a Functional Gonadotropinoma

    No full text
    Objective. Pituitary adenomas can be classified as clinically functional or silent. Depending on the reviewed literature, these are the first or second place in frequency of the total pituitary adenomas. Even rarer is the presence of a functional gonadotropinoma since only very few case reports exist to date. The conversion of a clinically silent to functional pituitary adenoma is extraordinarily rare; the mechanisms that explain these phenomena are unknown or not fully understood. Methods. We report the case of a woman who initially had a nonfunctional gonadotropinoma and in the course of her medical condition showed biochemical changes in her hormonal pituitary profile compatible with a functional gonadotropinoma. Results. We considered that the patient had a functional gonadotropinoma due to the hyperestrogenemia in the context of secondary amenorrhea, resolving the hyperestrogenemia after almost complete resection of the tumor. Conclusion. It is necessary to point out from a clinical and/or biochemical point of view the change in functionality that a nonfunctional pituitary adenoma may have. In the case of our patient, the suspicion of this change in functionality became evident when we found an increase in the FSH/LH ratio and a progressive increase in serum estradiol concentrations when the patient had amenorrhea

    Current Approach of Functioning Head and Neck Paragangliomas: Case Report of a Young Patient with Multiple Asynchronous Tumors

    No full text
    Introduction. Pheochromocytomas (Pheo) and paragangliomas (PGL) are rare neuroendocrine tumors arising from chromaffin cells of the adrenal medulla and from the extra-adrenal autonomic paraganglia, respectively. Only 1–3% of head and neck PGL (HNPGL) show elevated catecholamines, and at least 30% of Pheo and PGL (PCPG) are associated with genetic syndromes caused by germline mutations in tumor suppressor genes and proto-oncogenes. Clinical Case. A 33-year-old man with a past medical history of resection of an abdominal PGL at the age of eleven underwent a CT scan after a mild traumatic brain injury revealing an incidental brain tumor. The diagnosis of a functioning PGL was made, and further testing was undertaken with a PET-CT with 68Ga-DOTATATE, SPECT-CT 131-MIBG, and genetic testing. Discussion and Conclusion. The usual clinical presentation of functioning PCPG includes paroxistic hypertension, headache, and diaphoresis, sometimes with a suggestive family history in 30–40% of cases. Only 20% of PGL are located in head and neck, of which only 1–3% will show elevated catecholamines. Metastatic disease is present in up to 50% of cases, usually associated with a hereditary germline mutation. However, different phenotypes can be observed depending on such germline mutations. Genetic testing is important in patients with PCPG since 31% will present a germline mutation. In this particular patient, an SDHB gene mutation was revealed, which can drastically influence the follow-up plan and the genetic counsel offered. A multidisciplinary approach is mandatory for every patient presenting with PCPG

    The Genomic Landscape of Corticotroph Tumors: From Silent Adenomas to ACTH-Secreting Carcinomas

    No full text
    Corticotroph cells give rise to aggressive and rare pituitary neoplasms comprising ACTH-producing adenomas resulting in Cushing disease (CD), clinically silent ACTH adenomas (SCA), Crooke cell adenomas (CCA) and ACTH-producing carcinomas (CA). The molecular pathogenesis of these tumors is still poorly understood. To better understand the genomic landscape of all the lesions of the corticotroph lineage, we sequenced the whole exome of three SCA, one CCA, four ACTH-secreting PA causing CD, one corticotrophinoma occurring in a CD patient who developed Nelson syndrome after adrenalectomy and one patient with an ACTH-producing CA. The ACTH-producing CA was the lesion with the highest number of single nucleotide variants (SNV) in genes such as USP8, TP53, AURKA, EGFR, HSD3B1 and CDKN1A. The USP8 variant was found only in the ACTH-CA and in the corticotrophinoma occurring in a patient with Nelson syndrome. In CCA, SNV in TP53, EGFR, HSD3B1 and CDKN1A SNV were present. HSD3B1 and CDKN1A SNVs were present in all three SCA, whereas in two of these tumors SNV in TP53, AURKA and EGFR were found. None of the analyzed tumors showed SNV in USP48, BRAF, BRG1 or CABLES1. The amplification of 17q12 was found in all tumors, except for the ACTH-producing carcinoma. The four clinically functioning ACTH adenomas and the ACTH-CA shared the amplification of 10q11.22 and showed more copy-number variation (CNV) gains and single-nucleotide variations than the nonfunctioning tumors
    corecore