5 research outputs found

    A methodology for discovering novel brain-relevant peptides : combination of ribosome profiling and peptidomics

    No full text
    Brain derived peptides function as signaling molecules in the brain and regulate various physiological and behavioral processes. The low abundance and atypical fragmentation of these brain derived peptides makes detection using traditional proteomic methods challenging. In this study, we introduce and validate a new methodology for the discovery of novel peptides derived from mammalian brain. This methodology combines ribosome profiling and mass spectrometry-based peptidomics. Using this framework, we have identified a novel peptide in mouse whole brain whose expression is highest in the basal ganglia, hypothalamus and amygdala. Although its functional role is unknown, it has been previously detected in peripheral tissue as a component of the mRNA decapping complex. Continued discovery and studies of novel regulating peptides in mammalian brain may also provide insight into brain disorders. (C) 2019 Published by Elsevier B.V

    Increased Protein Insolubility in Brains From a Subset of Patients With Schizophrenia.

    No full text
    OBJECTIVE: The mechanisms leading to schizophrenia are likely to be diverse. However, there may be common pathophysiological pathways for subtypes of the disease. The authors tested the hypothesis that increased protein insolubility and ubiquitination underlie the pathophysiology for a subtype of schizophrenia. METHODS: Prefrontal cortex and superior temporal gyrus from postmortem brains of individuals with and without schizophrenia were subjected to cold sarkosyl fractionation, separating proteins into soluble and insoluble fractions. Protein insolubility and ubiquitin levels were quantified for each insoluble fraction, with normalization to total homogenate protein. Mass spectrometry analysis was then performed to identify the protein contents of the insoluble fractions. The potential biological relevance of the detected proteins was assessed using Gene Ontology enrichment analysis and Ingenuity Pathway Analysis. RESULTS: A subset of the schizophrenia brains showed an increase in protein insolubility and ubiquitination in the insoluble fraction. Mass spectrometry of the insoluble fraction revealed that brains with increased insolubility and ubiquitination exhibited a similar peptide expression by principal component analysis. The proteins that were significantly altered in the insoluble fraction were enriched for pathways relating to axon target recognition as well as nervous system development and function. CONCLUSIONS: This study suggests a pathological process related to protein insolubility for a subset of patients with schizophrenia. Determining the molecular mechanism of this subtype of schizophrenia could lead to a better understanding of the pathways underlying the clinical phenotype in some patients with major mental illness as well as to improved nosology and identification of novel therapeutic targets
    corecore