196 research outputs found

    The Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Perfectly Conducting Surfaces: The Full Angular Intensity Distribution

    Full text link
    By a computer simulation approach we study the scattering of pp- or ss-polarized light from a two-dimensional, randomly rough, perfectly conducting surface. The pair of coupled inhomogeneous integral equations for two independent tangential components of the magnetic field on the surface are converted into matrix equations by the method of moments, which are then solved by the biconjugate gradient stabilized method. The solutions are used to calculate the mean differential reflection coefficient for given angles of incidence and specified polarizations of the incident and scattered fields. The full angular distribution of the intensity of the scattered light is obtained for strongly randomly rough surfaces by a rigorous computer simulation approach.Comment: 15 pages (RevTeX

    The Angular Intensity Correlation Functions C(1)C^{(1)} and C(10)C^{(10)} for the Scattering of S-Polarized Light from a One-Dimensional Randomly Rough Dielectric Surface

    Full text link
    We calculate the short-range contributions C(1)C^{(1)} and C(10)C^{(10)} to the angular intensity correlation function for the scattering of s-polarized light from a one-dimensional random interface between two dielectric media. The calculations are carried out on the basis of a new approach that separates out explicitly the contributions C(1)C^{(1)} a nd C(10)C^{(10)} to the angular intensity correlation function. The contribution C(1)C^{(1)} displays peaks associated with the memory effect and the reciprocal memory effect. In the case of a dielectric-dielectric interface, which does not support surface electromagnetic surface waves, these peaks arise from the co herent interference of multiply-scattered lateral waves supported by the in terface. The contribution C(10)C^{(10)} is a structureless function of its arguments.Comment: LaTeX, 14 pages including 5 figures. To appear SPIE publicatio

    Nanogroove array on thin metallic film as planar lens with tunable focusing

    Full text link
    Numerical results for the distributions of light transmitted through metallic planar lenses composed of symmetric nanogroove arrays on the surfaces of a gold film are presented and explained. Both the near- and far-field distributions of the intensity of light transmitted are calculated by using a Green's function formalism. Results for an optimal transverse focus based on a quadratic variation of groove width are obtained. Meanwhile, a significant dependence of the focal length on the wavelength of light incident from the air side through the gold film into a dielectric substrate is found for this detector configuration.Comment: 14 pages, 6 figure

    The Design of Random Surfaces with Specified Scattering Properties: Surfaces that Suppress Leakage

    Full text link
    We present a method for generating a one-dimensional random metal surface of finite length L that suppresses leakage, i.e. the roughness-induced conversion of a surface plasmon polariton propagating on it into volume electromagnetic waves in the vacuum above the surface. Perturbative and numerical simulation calculations carried out for surfaces generated in this way show that they indeed suppress leakage.Comment: Revtex 6 pages (including 4 figures

    Random Surfaces that Suppress Single Scattering

    Full text link
    We present a method for generating numerically a one-dimensional random surface, defined by the equation x_3 = \zx, that suppresses single-scattering processes in the scattering of light from it within a specified range of scattering angles. Rigorous numerical calculations of the scattering of light from surfaces generated by this approach show that the single-scattering contribution to the mean scattered intensity is indeed suppressed within that range of angles.Comment: 3 pagers (Latex), 3 figure
    • …
    corecore