114 research outputs found

    Network approaches to Genome-Wide Association studies

    Get PDF
    In the framework of large-scale genotypic studies (describing the distribution of allele frequencies inside human genome) we characterize the Linkage Disequilibrium (LD) matrix as a network of relationships between alleles. We propose a suitable matrix discretization threshold, after a characterization of the distribution of noisy values inside LD matrix. We compare the main network parameters of a real LD matrix with two null models (Erdos-Renyi random network and a rewiring of the original network), in order to highlight the peculiar features of the LD network. We conclude stating the need of adequate computing tools for handling the high-dimensional data coming from Genome-Wide genotyping datasets

    ParkDB: a Parkinson's disease gene expression database

    Get PDF
    Parkinson's disease (PD) is a common, adult-onset, neuro-degenerative disorder characterized by the degeneration of cardinal motor signs mainly due to the loss of dopaminergic neurons in the substantia nigra. To date, researchers still have limited understanding of the key molecular events that provoke neurodegeneration in this disease. Here, we present ParkDB, the first queryable database dedicated to gene expression in PD. ParkDB contains a complete set of re-analyzed, curated and annotated microarray datasets. This resource enables scientists to identify and compare expression signatures involved in PD and dopaminergic neuron differentiation under different biological conditions and across species. Database URL: http://www2.cancer.ucl.ac.uk/Parkinson_Db2

    Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder

    Get PDF
    Bipolar disorder affects about 1% of the world's population, and its estimated heritability is about 75%. Only few whole genome or whole-exome sequencing studies in bipolar disorder have been reported, and no rare coding variants have yet been robustly identified. The use of isolated populations might help finding variants with a recent origin, more likely to have drifted to higher frequency by chance. Following this approach, we investigated 28 bipolar cases and 214 controls from the Faroe Islands by whole exome sequencing, and the results were followed-up in a British sample of 2025 cases and 1358 controls. Seventeen variants in 16 genes in the single-variant analysis, and 3 genes in the gene-based statistics surpassed exome-wide significance in the discovery phase. The discovery findings were supported by enrichment analysis of common variants from genome-wide association studies (GWAS) data and interrogation of protein-protein interaction networks. The replication in the British sample confirmed the association with NOS1 (missense variant rs79487279) and NCL (gene-based test). A number of variants from the discovery set were not present in the replication sample, including a novel PITPNM2 missense variant, which is located in a highly significant schizophrenia GWAS locus. Likewise, PIK3C2A identified in the gene-based analysis is located in a combined bipolar and schizophrenia GWAS locus. Our results show support both for existing findings in the literature, as well as for new risk genes, and identify rare variants that might provide additional information on the underlying biology of bipolar disorder

    Mutation of SALL2 causes recessive ocular coloboma in humans and mice.

    Get PDF
    Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice

    The Impact of Phenocopy on the Genetic Analysis of Complex Traits

    Get PDF
    A consistent debate is ongoing on genome-wide association studies (GWAs). A key point is the capability to identify low-penetrance variations across the human genome. Among the phenomena reducing the power of these analyses, phenocopy level (PE) hampers very seriously the investigation of complex diseases, as well known in neurological disorders, cancer, and likely of primary importance in human ageing. PE seems to be the norm, rather than the exception, especially when considering the role of epigenetics and environmental factors towards phenotype. Despite some attempts, no recognized solution has been proposed, particularly to estimate the effects of phenocopies on the study planning or its analysis design. We present a simulation, where we attempt to define more precisely how phenocopy impacts on different analytical methods under different scenarios. With our approach the critical role of phenocopy emerges, and the more the PE level increases the more the initial difficulty in detecting gene-gene interactions is amplified. In particular, our results show that strong main effects are not hampered by the presence of an increasing amount of phenocopy in the study sample, despite progressively reducing the significance of the association, if the study is sufficiently powered. On the opposite, when purely epistatic effects are simulated, the capability of identifying the association depends on several parameters, such as the strength of the interaction between the polymorphic variants, the penetrance of the polymorphism and the alleles (minor or major) which produce the combined effect and their frequency in the population. We conclude that the neglect of the possible presence of phenocopies in complex traits heavily affects the analysis of their genetic data

    The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes

    Get PDF
    Background Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. Methods and results Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. Conclusions Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis
    • …
    corecore