3,560 research outputs found
The Maxwell-Bloch Theory in Quantum Optics and the Kondo Model
In this letter, the problem of radiation in a fiber geometry interacting with
a two level atom is mapped onto the anisotropic Kondo model. Thermodynamical
and dynamical properties are then computed exploiting the integrability of this
latter system. We compute some correlation functions, decay rates and Lamb
shifts. In turn this leads to an analysis of the classical limit of the
anisotropic Kondo model.Comment: 4 pages, 1 figure. In Latex. Uses Revte
Online Convex Optimization with Binary Constraints
We consider online optimization with binary decision variables and convex
loss functions. We design a new algorithm, binary online gradient descent
(bOGD) and bound its expected dynamic regret. We provide a regret bound that
holds for any time horizon and a specialized bound for finite time horizons.
First, we present the regret as the sum of the relaxed, continuous round
optimum tracking error and the rounding error of our update in which the former
asymptomatically decreases with time under certain conditions. Then, we derive
a finite-time bound that is sublinear in time and linear in the cumulative
variation of the relaxed, continuous round optima. We apply bOGD to demand
response with thermostatically controlled loads, in which binary constraints
model discrete on/off settings. We also model uncertainty and varying load
availability, which depend on temperature deadbands, lockout of cooling units
and manual overrides. We test the performance of bOGD in several simulations
based on demand response. The simulations corroborate that the use of
randomization in bOGD does not significantly degrade performance while making
the problem more tractable
Extraction of Airways with Probabilistic State-space Models and Bayesian Smoothing
Segmenting tree structures is common in several image processing
applications. In medical image analysis, reliable segmentations of airways,
vessels, neurons and other tree structures can enable important clinical
applications. We present a framework for tracking tree structures comprising of
elongated branches using probabilistic state-space models and Bayesian
smoothing. Unlike most existing methods that proceed with sequential tracking
of branches, we present an exploratory method, that is less sensitive to local
anomalies in the data due to acquisition noise and/or interfering structures.
The evolution of individual branches is modelled using a process model and the
observed data is incorporated into the update step of the Bayesian smoother
using a measurement model that is based on a multi-scale blob detector.
Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother,
which provides Gaussian density estimates of branch states at each tracking
step. We select likely branch seed points automatically based on the response
of the blob detection and track from all such seed points using the RTS
smoother. We use covariance of the marginal posterior density estimated for
each branch to discriminate false positive and true positive branches. The
method is evaluated on 3D chest CT scans to track airways. We show that the
presented method results in additional branches compared to a baseline method
based on region growing on probability images.Comment: 10 pages. Pre-print of the paper accepted at Workshop on Graphs in
Biomedical Image Analysis. MICCAI 2017. Quebec Cit
The potential of Antheraea pernyi silk for spinal cord repair
This work was supported by the Institute of Medical Sciences of the University of Aberdeen, Scottish Rugby Union and RS McDonald Charitable Trust. We are grateful to Mr Nicholas Hawkins from Oxford University and Ms Annette Raffan from the University of Aberdeen for assistance with tensile testing. We thank Ms Michelle Gniβ for her help with the microglial response experiments. We also thank Mr Gianluca Limodio for assisting with the MATLAB script for automation of tensile testing’s data analysis.Peer reviewedPublisher PD
Coherence correlations in the dissipative two-state system
We study the dynamical equilibrium correlation function of the
polaron-dressed tunneling operator in the dissipative two-state system. Unlike
the position operator, this coherence operator acts in the full
system-plus-reservoir space. We calculate the relevant modified influence
functional and present the exact formal expression for the coherence
correlations in the form of a series in the number of tunneling events. For an
Ohmic spectral density with the particular damping strength , the series
is summed in analytic form for all times and for arbitrary values of
temperature and bias. Using a diagrammatic approach, we find the long-time
dynamics in the regime . In general, the coherence correlations decay
algebraically as at T=0. This implies that the linear static
susceptibility diverges for as , whereas it stays finite for
in this limit. The qualitative differences with respect to the
asymptotic behavior of the position correlations are explained.Comment: 19 pages, 4 figures, to be published in Phys. Rev.
Dynamic and Distributed Online Convex Optimization for Demand Response of Commercial Buildings
We extend the regret analysis of the online distributed weighted dual
averaging (DWDA) algorithm [1] to the dynamic setting and provide the tightest
dynamic regret bound known to date with respect to the time horizon for a
distributed online convex optimization (OCO) algorithm. Our bound is linear in
the cumulative difference between consecutive optima and does not depend
explicitly on the time horizon. We use dynamic-online DWDA (D-ODWDA) and
formulate a performance-guaranteed distributed online demand response approach
for heating, ventilation, and air-conditioning (HVAC) systems of commercial
buildings. We show the performance of our approach for fast timescale demand
response in numerical simulations and obtain demand response decisions that
closely reproduce the centralized optimal ones
Approximate Multi-Agent Fitted Q Iteration
We formulate an efficient approximation for multi-agent batch reinforcement
learning, the approximate multi-agent fitted Q iteration (AMAFQI). We present a
detailed derivation of our approach. We propose an iterative policy search and
show that it yields a greedy policy with respect to multiple approximations of
the centralized, standard Q-function. In each iteration and policy evaluation,
AMAFQI requires a number of computations that scales linearly with the number
of agents whereas the analogous number of computations increase exponentially
for the fitted Q iteration (FQI), one of the most commonly used approaches in
batch reinforcement learning. This property of AMAFQI is fundamental for the
design of a tractable multi-agent approach. We evaluate the performance of
AMAFQI and compare it to FQI in numerical simulations. Numerical examples
illustrate the significant computation time reduction when using AMAFQI instead
of FQI in multi-agent problems and corroborate the similar decision-making
performance of both approaches
Flow equation analysis of the anisotropic Kondo model
We use the new method of infinitesimal unitary transformations to calculate
zero temperature correlation functions in the strong-coupling phase of the
anisotropic Kondo model. We find the dynamics on all energy scales including
the crossover behaviour from weak to strong coupling. The integrable structure
of the Hamiltonian is not used in our approach. Our method should also be
useful in other strong-coupling models since few other analytical methods allow
the evaluation of their correlation functions on all energy scales.Comment: 4 pages RevTeX, 2 eps figures include
Boundary interactions changing operators and dynamical correlations in quantum impurity problems
Recent developments have made possible the computation of equilibrium
dynamical correlators in quantum impurity problems. In many situations however,
one is rather interested in correlators subject to a non equilibrium initial
preparation; this is the case for instance for the occupation probability
in the double well problem of dissipative quantum mechanics (DQM). We
show in this paper how to handle this situation in the framework of integrable
quantum field theories by introducing ``boundary interactions changing
operators''. We determine the properties of these operators by using an
axiomatic approach similar in spirit to what is done for form-factors. This
allows us to obtain new exact results for ; for instance, we find that
that at large times (or small ), the leading behaviour for g < 1/2} is
, with the universal ratio.
.Comment: 4 pages, revte
Form-factors computation of Friedel oscillations in Luttinger liquids
We show how to analytically determine for the "Friedel
oscillations" of charge density by a single impurity in a 1D Luttinger liquid
of spinless electrons.Comment: Revtex, epsf, 4pgs, 2fig
- …