12,367 research outputs found

    Scanning Tunneling Spectroscopy of Suspended Single-Wall Carbon Nanotubes

    Full text link
    We have performed low-temperature STM measurements on single-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by CVD on a Pt substrate with predefined trenches etched into it. Atomic resolution was obtained on the freestanding portions of the nanotubes. Spatially resolved spectroscopy on the suspended portion of both metallic and semiconducting nanotubes was also achieved, showing a Coulomb-staircase behavior superimposed on the local density of states. The spacing of the Coulomb blockade peaks changed with tip position reflecting a changing tip-tube capacitance

    A Characterization of Infinite LSP Words

    Full text link
    G. Fici proved that a finite word has a minimal suffix automaton if and only if all its left special factors occur as prefixes. He called LSP all finite and infinite words having this latter property. We characterize here infinite LSP words in terms of SS-adicity. More precisely we provide a finite set of morphisms SS and an automaton A{\cal A} such that an infinite word is LSP if and only if it is SS-adic and all its directive words are recognizable by A{\cal A}

    Search for magnetic fields in particle-accelerating colliding-wind binaries

    Full text link
    Some colliding-wind massive binaries, called particle-accelerating colliding-wind binaries (PACWB), exhibit synchrotron radio emission, which is assumed to be generated by a stellar magnetic field. However, no measurement of magnetic fields in these stars has ever been performed. We aim at quantifying the possible stellar magnetic fields present in PACWB to provide constraints for models. We gathered 21 high-resolution spectropolarimetric observations of 9 PACWB available in the ESPaDOnS, Narval and HarpsPol archives. We analysed these observations with the Least Squares Deconvolution method. We separated the binary spectral components when possible. No magnetic signature is detected in any of the 9 PACWB stars and all longitudinal field measurements are compatible with 0 G. We derived the upper field strength of a possible field that could have remained hidden in the noise of the data. While the data are not very constraining for some stars, for several stars we could derive an upper limit of the polar field strength of the order of 200 G. We can therefore exclude the presence of strong or moderate stellar magnetic fields in PACWB, typical of the ones present in magnetic massive stars. Weak magnetic fields could however be present in these objects. These observational results provide the first quantitative constraints for future models of PACWB.Comment: Accepted in A&

    Magnetohydrostatic solar prominences in near-potential coronal magnetic fields

    Full text link
    We present numerical magnetohydrostatic solutions describing the gravitationally stratified, bulk equilibrium of cool, dense prominence plasma embedded in a near-potential coronal field. These solutions are calculated using the FINESSE magnetohydrodynamics equilibrium solver and describe the morphologies of magnetic field distributions in and around prominences and the cool prominence plasma that these fields support. The equilibrium condition for this class of problem is usually different in distinct subdomains, separated by free boundaries, across which solutions are matched by suitable continuity or jump conditions describing force balance. We employ our precise finite element elliptic solver to calculate solutions not accessible by previous analytical techniques with temperature or entropy prescribed as free functions of the magnetic flux function, including a range of values of the polytropic index, temperature variations mainly across magnetic field lines and photospheric field profiles sheared close to the polarity inversion line. Out of the many examples computed here, perhaps the most noteworthy is one which reproduces precisely the three-part structure often encountered in observations: a cool dense prominence within a cavity/flux rope embedded in a hot corona. The stability properties of these new equilibria, which may be relevant to solar eruptions, can be determined in the form of a full resistive MHD spectrum using a companion hyperbolic stability solver.Comment: To appear in ApJ August 200

    Phonon runaway in nanotube quantum dots

    Full text link
    We explore electronic transport in a nanotube quantum dot strongly coupled with vibrations and weakly with leads and the thermal environment. We show that the recent observation of anomalous conductance signatures in single-walled carbon nanotube (SWCNT) quantum dots can be understood quantitatively in terms of current driven `hot phonons' that are strongly correlated with electrons. Using rate equations in the many-body configuration space for the joint electron-phonon distribution, we argue that the variations are indicative of strong electron-phonon coupling requiring an analysis beyond the traditional uncorrelated phonon-assisted transport (Tien-Gordon) approach.Comment: 8 pages, 6 figure

    Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers

    Get PDF
    We present experimental results on a model system for studying wave propagation in a complex medium exhibiting low frequency resonances. These experiments enable us to investigate a fundamental question that is relevant for many materials, such as metamaterials, where low-frequency scattering resonances strongly influence the effective medium properties. This question concerns the effect of correlations in the positions of the scatterers on the coupling between their resonances, and hence on wave transport through the medium. To examine this question experimentally, we measure the effective medium wave number of acoustic waves in a sample made of bubbles embedded in an elastic matrix over a frequency range that includes the resonance frequency of the bubbles. The effective medium is highly dispersive, showing peaks in the attenuation and the phase velocity as functions of the frequency, which cannot be accurately described using the Independent Scattering Approximation (ISA). This discrepancy may be explained by the effects of the positional correlations of the scatterers, which we show to be dependent on the size of the scatterers. We propose a self-consistent approach for taking this "polydisperse correlation" into account and show that our model better describes the experimental results than the ISA

    The Pion Light-Cone Wave Function Phi_pi on the lattice: a partonic signal?

    Get PDF
    We determine the conditions required to study the pion light-cone wave function Phi_pi with a new method: a direct display of the partons constituting the pion. We present the preliminary results of a lattice computation of Phi_pi following this direction. An auxiliary scalar-quark is introduced. The spectroscopy of its bound states is studied. We observe some indications of a partonic behavior of the system of this scalar-quark and the anti-quark.Comment: 3 pages, 4 figures, Lattice2001(matrixelement

    Light hadron spectroscopy on the lattice with the non-perturbatively improved Wilson action

    Get PDF
    We present results for the light meson masses and decay constants as obtained from calculations with the non-perturbatively improved (`Alpha') action and operators on a 24^3 \times 64 lattice at beta = 6.2, in the quenched approximation. The analysis was performed in a way consistent with O(a) improvement. We obtained: reasonable agreement with experiment for the hyperfine splitting; f_K=156(17) MeV, f_pi =139(22) MeV, f_K/f_pi = 1.13(4) ; f_{K*}=219(7) MeV, f_rho =199(15) MeV, f_phi =235(4) MeV; f_{K*}^{T}(2 GeV) = 178(10) MeV, f_rho^{T}(2 GeV) =165(11) MeV, where f_V^{T} is the coupling of the tensor current to the vector mesons; the chiral condensate ^\bar{MS} (2 GeV)= - (253 +/- 25 MeV)^3. Our results are compared to those obtained with the unimproved Wilson action. We also verified that the free-boson lattice dispersion relation describes our results very accurately for a large range of momenta.Comment: 29 pages (LaTeX), 14 Postscript figure
    • 

    corecore