334 research outputs found
Numerical Implementation of a Critical State Model for Soft Rocks
This paper details the basic tasks for the numerical implementation of a simple elasto-plastic critical state model for bonded materials (i.e. soft rocks-hard soils) into the finite element program SNAC developed at the University of Newcastle in Australia. The first task described focusses on the derivation of the incremental constitutive relationships used to represent the mechanical response of a bonded/cemented material under saturated conditions. The second task presents how these stress-strain relations can be numerically integrated using an explicit substepping scheme with automatic error control. The third task concentrates on the verification of the substepping algorithm proposed. The model used to represent the saturated mechanical response of a bonded material combines the modified Cam clay with the constitutive relationships for cemented materials proposed in Gens & Nova (1993), but incorporates some flexibility on the degradation law adopted. The role of suction and other relevant aspects of unsaturated behaviour are also discussed at the end of the paper
Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells
Background: Many studies have shown that mitochondrial dysfunction, complex I inhibition in particular, is involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a specific inhibitor of mitochondrial complex I, has been shown to produce neurodegeneration in rats as well as in many cellular models that closely resemble PD. However, the mechanisms through which complex
I dysfunction might produce neurotoxicity are as yet unknown. A comprehensive analysis of the mitochondrial protein expression profile affected by rotenone can provide important insight into the role of mitochondrial dysfunction in PD.
Results: Here, we present our findings using a recently developed proteomic technology called SILAC (stable isotope labeling by amino acids in cell culture) combined with polyacrylamide gel
electrophoresis and liquid chromatography-tandem mass spectrometry to compare the
mitochondrial protein profiles of MES cells (a dopaminergic cell line) exposed to rotenone versus control. We identified 1722 proteins, 950 of which are already designated as mitochondrial proteins based on database search. Among these 950 mitochondrial proteins, 110 displayed
significant changes in relative abundance after rotenone treatment. Five of these selected proteins were further validated for their cellular location and/or treatment effect of rotenone. Among them, two were confirmed by confocal microscopy for mitochondrial localization and three were confirmed by Western blotting (WB) for their regulation by rotenone.
Conclusion: Our findings represent the first report of these mitochondrial proteins affected by rotenone; further characterization of these proteins may shed more light on PD pathogenesis.The study is supported by NIH grants to JZ (R01AG025327 and R01ES012703)
An acoustic emission landslide early warning system for communities in low-income and middle-income countries
This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Early warning systems for slope instability are needed to alert users of accelerating slope deformation behaviour, enable evacuation of vulnerable people, and conduct timely repair and maintenance of critical infrastructure. Communities exposed to landslide risk in low- and middle-income countries seldom currently instrument and monitor slopes to provide a warning of instability because existing techniques are complex and prohibitively expensive. Research and field trials have demonstrated conclusively that acoustic emission (AE) monitoring can be an effective approach to detect accelerating slope movements and to subsequently communicate warnings to users. The objective of this
study was to develop and assess a simple, robust, low-cost AE monitoring system to warn of incipient landslides, which can be widely deployed and operated by communities globally to help protect vulnerable people. This paper describes a novel AE measurement sensor that has been designed and developed with the
cost constrained to a few hundred dollars (US). Results are presented from physical model experiments that demonstrate performance of the AE system in measuring accelerating deformation behaviour, with quantifiable relationships between AE and displacement rates. Exceedance of a pre-determined trigger level of AE can be used to communicate an alarm to users in order to alert them of a slope failure. Use of this EWS approach by communities worldwide would reduce the number of fatalities caused by landslides
A Tethered Bilayer Assembled on Top of Immobilized Calmodulin to Mimic Cellular Compartmentalization
International audienceBACKGROUND: Biomimetic membrane models tethered on solid supports are important tools for membrane protein biochemistry and biotechnology. The supported membrane systems described up to now are composed of a lipid bilayer tethered or not to a surface separating two compartments: a "trans" side, one to a few nanometer thick, located between the supporting surface and the membrane; and a "cis" side, above the synthetic membrane, exposed to the bulk medium. We describe here a novel biomimetic design composed of a tethered bilayer membrane that is assembled over a surface derivatized with a specific intracellular protein marker. This multilayered biomimetic assembly exhibits the fundamental characteristics of an authentic biological membrane in creating a continuous yet fluid phospholipidic barrier between two distinct compartments: a "cis" side corresponding to the extracellular milieu and a "trans" side marked by a key cytosolic signaling protein, calmodulin. METHODOLOGY/PRINCIPAL FINDINGS: We established and validated the experimental conditions to construct a multilayered structure consisting in a planar tethered bilayer assembled over a surface derivatized with calmodulin. We demonstrated the following: (i) the grafted calmodulin molecules (in trans side) were fully functional in binding and activating a calmodulin-dependent enzyme, the adenylate cyclase from Bordetella pertussis; and (ii) the assembled bilayer formed a continuous, protein-impermeable boundary that fully separated the underlying calmodulin (trans side) from the above medium (cis side). CONCLUSIONS: The simplicity and robustness of the tethered bilayer structure described here should facilitate the elaboration of biomimetic membrane models incorporating membrane embedded proteins and key cytoplasmic constituents. Such biomimetic structures will also be an attractive tool to study translocation across biological membranes of proteins or other macromolecules
Rapamycin-loaded nanoparticles for inhibition of neointimal hyperplasia in experimental vein grafts
<p>Abstract</p> <p>Background</p> <p>Nanoparticles possess several advantages as a carrier system for intracellular delivery of therapeutic agents. Rapamycin is an immunosuppressive agent which also exhibits marked antiproliferative properties. We investigated whether rapamycin-loaded nanoparticles(NPs) can reduce neointima formation in a rat model of vein graft disease.</p> <p>Methods</p> <p>Poly(lactic-co-glycolic acid) (PLGA) NPs containing rapamycin was prepared using an oil/water solvent evaporation technique. Nanoparticle size and morphology were determined by dynamic light scattering methodology and electron microscopy. In vitro cytotoxicity of blank, rapamycin-loaded PLGA (RPLGA) NPs was studied using MTT Assay. Excised rat jugular vein was treated ex vivo with blank-NPs, or rapamycin-loaded NPs, then interposed back into the carotid artery position using a cuff technique. Grafts were harvested at 21 days and underwent morphometric analysis as well as immunohistochemical analysis.</p> <p>Results</p> <p>Rapamycin was efficiently loaded in PLGA nanoparticles with an encapsulation efficiency was 87.6%. The average diameter of NPs was 180.3 nm. The NPs-containing rapamycin at 1 ng/ml significantly inhibited vascular smooth muscular cells proliferation. Measurement of rapamycin levels in vein grafts shown that the concentration of rapamycin in vein grafts at 3 weeks after grafting were 0.9 ± 0.1 μg/g. In grafted veins without treatment intima-media thickness was 300.4 ±181.5 μm after grafting 21 days. Whereas, Veins treated with rapamycin-loaded NPs showed a reduction of intimal-media thickness of 150.2 ± 62.5 μm (p = 0.001). CD-31 staining was used to measure luminal endothelial coverage in grafts and indicated a high level of endothelialization in 21 days vein grafts with no significant effect of blank or rapamycin-loaded NPs group.</p> <p>Conclusions</p> <p>We conclude that sustained-release rapamycin from rapymycin loaded NPs inhibits vein graft thickening without affecting the reendothelialization in rat carotid vein-to-artery interposition grafts and this may be a promising therapy for the treatment of vein graft disease.</p
- …