22 research outputs found

    Organotypic brain slices: a model to study the neurovascular unit micro-environment in epilepsies.

    Get PDF
    BACKGROUND: It is now recognized that the neuro-vascular unit (NVU) plays a key role in several neurological diseases including epilepsy, stroke, Alzheimer\u27s disease, multiple sclerosis and the development of gliomas. Most of these disorders are associated with NVU dysfunction, due to overexpression of inflammatory factors such as vascular endothelial growth factor (VEGF). Various in vitro models have been developed previously to study the micro-environment of the blood-brain barrier (BBB). However none of these in vitro models contained a complete complement of NVU cells, nor maintained their interactions, thus minimizing the influence of the surrounding tissue on the BBB development and function. The organotypic hippocampal culture (OHC) is an integrative in vitro model that allows repeated manipulations over time to further understand the development of cell circuits or the mechanisms of brain diseases. METHODS/DESIGN: OHCs were cultured from hippocampi of 6-7 day-old Sprague Dawley rats. After 2 weeks in culture, seizures were induced by application of kainate or bicuculline into culture medium. The regulation of BBB integrity under physiological and pathological conditions was evaluated by immunostaining of the main tight junction (TJ) proteins and of the basal membrane of microvessels. To mimic or prevent BBB disassembly, we used diverse pro- or anti-angiogenic treatments. DISCUSSION: This study demonstrates that NVU regulation can be investigated using OHCs. We observed in this model system an increase in vascularization and a down-regulation of TJ proteins, similar to the vascular changes described in a chronic focus of epileptic patients, and in rodent models of epilepsy or inflammation. We observed that Zonula occludens-1 (ZO-1) protein disappeared after seizures associated with neuronal damage. In these conditions, the angiopoeitin-1 system was down-regulated, and the application of r-angiopoeitin-1 allowed TJ re-assembly. This article demonstrates that organotypic culture is a useful model to decipher the links between epileptic activity and vascular damage, and also to investigate NVU regulation in diverse neurological disorders

    Inflammation, angiogenèse et épilepsie

    No full text
    Il est maintenant reconnu que la gliose participe à l’épileptogenèse, notamment dans le cas d’épilepsies focales symptomatiques. En effet, l’astroglie et la microglie activées sécrètent de nombreux facteurs inflammatoires, dont certains modifient l’excitabilité des neurones et d’autres contribuent à la neurotoxicité. Ces processus redondants entretiennent la chronicité de l’épilepsie. Cependant la glie n’est pas la seule source d’inflammation, car plusieurs études ont démontré qu’une altération de la barrière hémato-encéphalique est en elle-même une condition ictogène ou épileptogène, via l’extravasation de leucocytes et de protéines sériques qui induisent des réactions inflammatoires et immunitaires et modifient l’environnement neuronal. Récemment, un rôle important de l’inflammation périphérique a été évoqué dans ces épilepsies, attribué aux cytokines circulantes qui activent l’extravasation leucocytaire

    Rôle de la glie dans la réaction inflammatoire et la réorganisation morphologique dans les épilepsies humaines du lobe temporal avec sclérose hippocampique

    No full text
    MONTPELLIER-BU Médecine UPM (341722108) / SudocMONTPELLIER-BU Médecine (341722104) / SudocSudocFranceF

    Angiogenèse et remodelage tissulaire dans les foyers épileptiques humains et expérimentaux

    No full text
    MONTPELLIER-BU Médecine UPM (341722108) / SudocMONTPELLIER-BU Médecine (341722104) / SudocSudocFranceF

    Régulations de la barrière hémato-encéphalique dans l'épilepsie du lobe temporal (implication dans les mécanismes de l'épileptogenèse expérimentale)

    No full text
    L'épilepsie du lobe temporal est fréquente et souvent pharmacorésistante. L'épileptogenèse est imputée à la mort neuronale, l'inflammation ou au déséquilibre de la neurotransmission. Récemment, la perméabilité vasculaire a été reconnue comme une cause de crises d'épilepsie. Dans un modèle d'épilepsie chronique, nous avons montré une angiogenèse associant vascularisation, surexpression de VEGF, perte de protéines des jonctions serrées et perméabilité de la BHE. L'observation des immunoglobulines G (IgGs) comme marqueurs de perméabilité vasculaire nous a permis de découvrir que les IgGs s'accumulent dans les neurones. Nous avons alors étudié le rôle de ces protéines dans l'épileptogenèse. Ensuite, afin de corréler la perméabilité de la BHE à l'épileptogenèse, nous avons étudié le kindling, un modèle dans lequel les crises sont induites mais pas spontanées. Nous n'avons observé aucun remaniement vasculaire, si ce n'est une dérégulation transitoire de deux protéines de jonctions serrées. La comparaison de ces deux modèles confirme la contribution de la dérégulation de la BHE dans la genèse des crises et la désigne comme une nouvelle cible thérapeutique.Temporal lobe epilepsy is the most frequent form of pharmacoresistant epilepsies. Epileptogenesis is commonly imputed to neuronal loss, inflammation and an imbalance in neurotransmission. Now, vascular permeability was shown to participate in epileptic seizures generation. In a model of chronic epilepsy, we showed a neo-vascularisation associated with VEGF over expression, loss of tight junction proteins and BBB permeability. The use of immunoglobulins G (IgGs) as markers of permeability vascular allowed us to discover that the IgGs accumulates in neurones. We then studied the role of these proteins in epileptogenesis. Then, to correlate BBB permeability to epileptogenesis, we studied the kindling, a model in which seizures are induced but never spontaneous. We observed no vascular remodeling, except for a transient deregulation of tight junctions proteins. The comparison of these models confirms the contribution of BBB deregulation and points it as new therapeutic target.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Etude pharmacologique des canaux calciques de type T dans des modèles murins de convulsion et d'épileptogenèse.

    No full text
    De nombreuses études expérimentales montrent que les canaux calciques activés par la dépolarisation membranaire, tout particulièrement les canaux calciques de type T (canaux T), jouent un rôle important dans la physiopathologie des épilepsies. Il existe trois isoformes des canaux T, Cav3.1, Cav3.2 et Cav3.3, toutes exprimées au niveau neuronal. De manière classique, c'est dans l'épilepsie absence où les canaux T ont été le plus étudiés. Les canaux T jouent également un rôle dans des modèles d'épilepsie partielle secondairement généralisée, comme le modèle pilocarpine qui mime l'épilepsie du lobe temporal (ELT). Jusqu'à présent ces canaux ne possédaient pas de pharmacologie spécifique, mais plusieurs molécules récemment synthétisées, en particulier le TTA-A2, apparaissent sélectives des canaux T. Le premier objectif de ma thèse était d'étudier l'implication des canaux T dans l'épileptogenèse. Pour cela nous avons traité des souris au TTA-A2 pendant la phase de latence du modèle pilocarpine (modèle ELT). Nos conditions expérimentales ne nous ont pas permis de conclure quant à une action protectrice du TTA-A2 dans ce modèle. Le deuxième objectif était d'étudier l'effet du TTA-A2 sur des modèles murins de convulsions généralisées : le modèle du Maximal Electroshock Seizure (MES) et le modèle pentylènetétrazole (PTZ). Deux lignées de souris inactivées pour les isoformes Cav3.1 ou Cav3.2 (KO Cav3.1 et KO Cav3.2) ont également été caractérisées dans cette étude. Nous montrons que le TTA-A2 réduit l'apparition des crises toniques dans le modèle MES et que les souris KO Cav3.1 sont également protégées, suggérant un rôle prépondérant des canaux Cav3.1 dans le développement des crises toniques.Numerous experimental studies show that calcium channels activated by membrane depolarization, especially T-type calcium channels (T-channels), play an important role in the physiopathology of epilepsy. There are three T-channels isoforms, Cav3.1, Cav3.2 and Cav3.3, all expressed in neuronal level. Conventionally, T-channels were the most studied in absence epilepsy. T-channels are also involved in partial secondarily generalized epilepsy models, as the pilocarpine model that mimics temporal lobe epilepsy (TLE).Up to now, there was no specific pharmacology for this channels, but several molecules have recently been synthesized, particularly TTA-A2, appearing selective T-channels. The first goal of my thesis was to study the T-channels involvement in epileptogenesis. For this purpose we treated mice with TTA-A2 during the silent phase of the pilocarpine model (TLE model). Our experimental conditions do not allow us to conclude about a possible protective action of TTA-A2 on this model. The second goal was to study TTA-A2 effects on mice models of generalized seizures: the Maximal Electroshock model (MES) and the pentylenetetrazole model (PTZ). Two mice strains knock-out for Cav3.1 or Cav3.2 (KO Cav3.1 and KO Cav3.2) have also been characterized in this study. We show that the TTA-A2 reduces the appearance of tonic seizures in the MES model and the KO Cav3.1 mice are also protected, suggesting a preponderant role of Cav3.1 channels in the development of tonic seizures.MONTPELLIER-BU Médecine UPM (341722108) / SudocSudocFranceF

    Blood-brain barrier impairment and autoimmunity in epilepsy (role of Immunoglobulins G and biomarkers identification.)

    No full text
    L'épilepsie est une maladie neurologique chronique caractérisée par des crises spontanées et récurrentes. Les crises sont générées par un déséquilibre dans le fonctionnement des neurotransmetteurs et des canaux ioniques qui contrôlent l'excitabilité. L'épileptogenèse est majoritairement associée à des pertes neuronales, une gliose, une inflammation plus ou moins importants. Un tiers des patients deviennent réfractaires. Récemment, plusieurs équipes ont montré une association entre les épilepsies focales pharmacorésistantes et la rupture de la barrière hémato-encéphalique (BHE). De plus, une implication du système immunitaire ainsi qu'une cause auto-immune de l'épilepsie ont été suggérées. Dans cette thèse, nous avons observé dans le tissu de patients atteints d'épilepsie pharmacorésistante du lobe temporal (ELT), des fuites d'Immunoglobulines G (IgG) dans le parenchyme et leur accumulation dans les neurones présentant des signes de neurodégénérescence. Le récepteur d'IgG de grande affinité FcyRI est surexprimé sur les cellules ayant une morphologie de type microglie/ macrophages, tandis que le récepteur de faible affinité FcyRIII et le récepteur inhibiteur FcgRII sont moins présents. Dans ce même tissu nous avons noté que les protéines du complément C3c et C5b9 sont exprimées. Ensuite, nous avons étudié si le modèle murin d'épilepsie focale induite par injection intra-amygdalienne de kaïnate reproduit la physiopathologie de l'ELT associée à une rupture de la BHE. ZO-1, la principale protéine des jonctions serrées, présente un marquage discontinu indiquant que la BHE a été affectée. Nous avons remarqué des fuites d'IgGs et d'albumine ainsi que leur accumulation dans le parenchyme coïncidant avec la survenue des crises. La présence d IgG dans l'épilepsie pourrait également avoir une cause auto-immune. Nous avons utilisé des puces à protéines pour identifier des antigènes qui induisent une réponse immunitaire, dans le plasma des patients atteints d'ELT, Nous avons sélectionné 19 auto-anticorps spécifiques qui peuvent servir de potentiels biomarqueurs diagnostiques L'ensemble de ces résultats suggère que les fuites d'IgG sont associées à une déficience neuronale, conduisant à des changements immunologiques dans le foyer épileptique qui participent à la pathogénèse de l'ELT. Nous pensons qu'une meilleure interprétation des profils de ces auto-anticorps pourrait offrir de nouvelles perspectives thérapeutiques.Epilepsy is a chronic neurologic disorder characterized by recurrent unprovoked seizures. Seizures are generated by an imbalance in the functioning of neurotransmitters and ion channels that control excitability. Epileptogenesis is mostly associated with neuronal loss, gliosis, and inflammation more or less important. A third of patients become drug refractory. Recently, several teams have shown an association between drug-resistant focal epilepsy and disruption of the blood-brain barrier (BBB). In addition, a possible role of the immune system and an autoimmune nature in epilepsy has been suggested. In this thesis, in the tissue of patients with drug-resistant temporal lobe epilepsy (TLE), leakage of immunoglobulin G (IgG) into the parenchyma and IgG accumulation in neurons with attendant signs of neurodegeneration was observed. In addition, the high affinity IgG receptor, FcgRI was expressed on microglia/macrophage shaped cells. The expression of the low affinity IgG receptor, FcgRIII and the inhibitory IgG receptor, FcgRII was decreased. In the same tissue the complement proteins C3c and C5b9 were present on astrocyte/ microglia and macrophage/ microglia shaped cells respectively. Then, we evaluated whether the mouse model of focal epilepsy induced by intra-amygdala microinjection of kainic acid reproduced a pathophysiology of TLE associated with BBB impairment. ZO-1, the main tight junction protein presented discontinuous staining indicating that BBB was affected. Both IgG and albumin extravasations from blood vessels were noted and its parenchymal accumulation was concomitant with seizure occurrence. Another hypothesis of IgG presence in epilepsy incriminates an auto-immune cause. Protein microarray technology was used for identification in pooled plasma samples, of antigens that bind plasma antibody from TLE patients. 19 potential autoantibodies were identified as potential diagnostic biomarkers. Together, these observations suggest that IgG leakage is associated with neuronal impairment, leading to immunological changes in epileptic focus involved in the pathogenesis of TLE. A better interpretation of the profiles of these autoantibodies could offer new therapeutic and diagnostic perspectives.MONTPELLIER-BU Pharmacie (341722105) / SudocSudocFranceF

    Why and how to target angiogenesis in focal epilepsies

    No full text
    International audienceWe previously reported that blood-brain barrier (BBB) disruption was associated with a pathologic angiogenesis in patients with intractable temporal lobe epilepsy (TLE) and in vivo models. This was confirmed by the overexpression of vascular endothelial growth factor (VEGF) in neurons and astrocytes and of its receptor vascular endothelial growth factor-2 (VEGF-R2) (or flk1) in endothelial cells. Using an original in vitro model, we showed that seizures were sufficient to activate the VEGF/VEGF-R2 system, which promotes vascularization and tight junction disassembly. Such a BBB dysfunction was shown to contribute to epileptogenesis. Therefore, we postulate that drugs that target the specific VEGF-R2 pathways involved in permeability are able to repair the BBB, and, therefore, could reduce epileptogenicity
    corecore