2,399 research outputs found

    Network Structure, Topology and Dynamics in Generalized Models of Synchronization

    Full text link
    We explore the interplay of network structure, topology, and dynamic interactions between nodes using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, interconnected oscillators synchronize in stages, revealing network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process, such as diffusion. However, social and biological processes are often non-conservative. We propose a new model of synchronization in a network of oscillators coupled via non-conservative processes. We study dynamics of synchronization of a synthetic and real-world networks and show that different synchronization models reveal different structures within the same network

    The Lie-Poisson structure of the reduced n-body problem

    Full text link
    The classical n-body problem in d-dimensional space is invariant under the Galilean symmetry group. We reduce by this symmetry group using the method of polynomial invariants. As a result we obtain a reduced system with a Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The reduction preserves the natural form of the Hamiltonian as a sum of kinetic energy that depends on velocities only and a potential that depends on positions only. Hence we proceed to construct a Poisson integrator for the reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure

    A Parameterized Centrality Metric for Network Analysis

    Full text link
    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [Bonacich, 2001], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, specifically, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method [Newman and Girvan, 2004] for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. By studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed method to several benchmark networks and show that it leads to better insight into network structure than alternative methods.Comment: 11 pages, submitted to Physical Review

    Towards a Formal Verification Methodology for Collective Robotic Systems

    Get PDF
    We introduce a UML-based notation for graphically modeling systemsā€™ security aspects in a simple and intuitive way and a model-driven process that transforms graphical specifications of access control policies in XACML. These XACML policies are then translated in FACPL, a policy language with a formal semantics, and the resulting policies are evaluated by means of a Java-based software tool

    Mutually Penetrating Motion of Self-Organized 2D Patterns of Soliton-Like Structures

    Full text link
    Results of numerical simulations of a recently derived most general dissipative-dispersive PDE describing evolution of a film flowing down an inclined plane are presented. They indicate that a novel complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life experiments satisfying the validity conditions of the theory are possible: the required sufficiently viscous liquids are readily available.Comment: minor corrections, 4 pages, LaTeX, 6 figures, mpeg simulations available upon or reques

    Point vortices on the sphere: a case with opposite vorticities

    Full text link
    We study systems formed of 2N point vortices on a sphere with N vortices of strength +1 and N vortices of strength -1. In this case, the Hamiltonian is conserved by the symmetry which exchanges the positive vortices with the negative vortices. We prove the existence of some fixed and relative equilibria, and then study their stability with the ``Energy Momentum Method''. Most of the results obtained are nonlinear stability results. To end, some bifurcations are described.Comment: 35 pages, 9 figure

    Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows

    Full text link
    When an integrable two-degrees-of-freedom Hamiltonian system possessing a circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a {\it flat parabolic resonance}, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with {\it small} (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed

    A new method for tracking of motor skill learning through practical application of Fittsā€™ law

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund.A novel upper limb motor skill measure, task productivity rate (TPR) was developed integrating speed and spatial error, delivered by a practical motor skill rehabilitation task (MSRT). This prototype task involved placement of 5 short pegs horizontally on a spatially configured rail array. The stability of TPR was tested on 18 healthy right-handed adults (10 women, 8 men, median age 29 years) in a prospective single-session quantitative within-subjects study design. Manipulations of movement rate 10% faster and slower relative to normative states did not significantly affect TPR, F(1.387, 25.009) = 2.465, p = .121. A significant linear association between completion time and error was highest during the normative state condition (Pearson's r = .455, p < .05). Findings provided evidence that improvements in TPR over time reflected motor learning with possible changes in coregulation behavior underlying practice under different conditions. These findings extend Fittsā€™ law theory to tracking of practical motor skill using a dexterity task, which could have potential clinical applications in rehabilitation
    • ā€¦
    corecore