31 research outputs found

    Application of Suction-cup-attached VHF Transmitters to the Study of Beluga, Delphinapterus leucas, Surfacing Behavior in Cook Inlet, Alaska

    Get PDF
    Suction-cup-attached VHF radio transmittes were deployed on belugas, Delphinapterus leucas, in Cook Inlet, Alaska, in 1994 and 1995 to characterize the whales' surfacing behavior. Data from video recordings were also used to characterize behavior of undisturbed whales and whales actively pursued for tagging. Statistics for dive intervals (time between the midpoints of contiguous surfacings) and surfacing intevals (time at the surface per surfacing) were estimated. Operations took place on the tidal delta of the Susitna and Little Susitna Rivers. During the 2-yr study, eight whales were successfully tagged, five tags remained attached for >60 min, and data from these were used in the analyses. Mean dive interval was 24.1 sec (interwhale SD=6.4 sec, n=5). The mean surfacing interval, as determined from the duration of signals received from the radio transmitters, was 1.8 sec (SD=0.3 sec, n=125) for one of the whales. Videotaped behaviors were categorized as "head-lifts" or "slow-rolls." Belugas were more likely to head-lift than to slow-roll during vessel approaches and tagging attempts when compared to undisturbed whales. In undisturbed groups, surfacing intervals determined from video records were significantly different between head-lifting (average = 1.02 sect, SD=0.38 sed, n=28) and slow-rolling whales (average = 2.45 sec, SD=0.37 sec, n=106). Undisturbed juveniles exhibited shorter slow-roll surfacing intervals (average = 2.25 sec, SD=0.32 sec, n=36) than adults (average = 2.55 sec, SD=0.36 sec, n=70). We did not observe strong reactions by the belugas to the suction-cup tags. This tagging method shows promise for obtaining surfacing data for durations of several days

    The evolution of a buoyant river plume in response to a pulse of high discharge from a small midlatitude river

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(7),(2020): 1915-1935, https://doi.org/10.1175/JPO-D-19-0127.1.A unique feature of small mountainous rivers is that discharge can be elevated by an order of magnitude during a large rain event. The impact of time-varying discharge on freshwater transport pathways and alongshore propagation rates in the coastal ocean is not well understood. A suite of simulations in an idealized coastal ocean domain using the Regional Ocean Modeling System (ROMS) with varying steady background discharge conditions (25–100 m3 s−1), pulse amplitude (200–800 m3 s−1), pulse duration (1–6 days), and steady downwelling-favorable winds (0–4 m s−1) are compared to investigate the downstream freshwater transport along the coast (in the direction of Kelvin wave propagation) following a discharge pulse from the river. The nose of the pulse propagates rapidly alongshore at 0.04–0.32 m s−1 (faster propagation corresponds with larger pulse volume and faster winds) transporting 13%–66% of the discharge. The remainder of the discharge volume initially accumulates in the bulge near the river mouth, with lower retention for longer pulse duration and stronger winds. Following the pulse, the bulge eddy disconnects from the river mouth and is advected downstream at 0–0.1 m s−1, equal to the depth-averaged wind-driven ambient water velocity. As it transits alongshore, it sheds freshwater volume farther downstream and the alongshore freshwater transport stays elevated between the nose and the transient bulge eddy. The evolution of freshwater transport at a plume cross section can be described by the background discharge, the passage of the pulse nose, and a slow exponential return to background conditions.Support for this research was provided by National Science Foundation Grants OCE1131238, OCE1260394, and OCE1829979

    Estuarine exchange flow quantified with isohaline coordinates : contrasting long and short estuaries

    Get PDF
    Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 748–763, doi:10.1175/JPO-D-11-086.1.Isohaline coordinate analysis is used to compare the exchange flow in two contrasting estuaries, the long (with respect to tidal excursion) Hudson River and the short Merrimack River, using validated numerical models. The isohaline analysis averages fluxes in salinity space rather than in physical space, yielding the isohaline exchange flow that incorporates both subtidal and tidal fluxes and precisely satisfies the Knudsen relation. The isohaline analysis can be consistently applied to both subtidally and tidally dominated estuaries. In the Hudson, the isohaline exchange flow is similar to results from the Eulerian analysis, and the conventional estuarine theory can be used to quantify the salt transport based on scaling with the baroclinic pressure gradient. In the Merrimack, the isohaline exchange flow is much larger than the Eulerian quantity, indicating the dominance of tidal salt flux. The exchange flow does not scale with the baroclinic pressure gradient but rather with tidal volume flux. This tidal exchange is driven by tidal pumping due to the jet–sink flow at the mouth constriction, leading to a linear dependence of exchange flow on tidal volume flux. Finally, a tidal conversion parameter Qin/Qprism, measuring the fraction of tidal inflow Qprism that is converted into net exchange Qin, is proposed to characterize the exchange processes among different systems. It is found that the length scale ratio between tidal excursion and salinity intrusion provides a characteristic to distinguish estuarine regimes.SNC is supported by a WHOI postdoctoral scholarship, a NSF Grant OCE-0926427, and a Taiwan National Science Council Grant NSC 100- 2199-M-002-028.WRGis supported byNSFGrantOCE- 0926427. JAL is supported by NSF Grant OCE-0452054.2012-11-0

    The influence of lateral advection on the residual estuarine circulation : a numerical modeling study of the Hudson River Estuary

    Get PDF
    Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 107-124, doi:10.1175/2008JPO3952.1.In most estuarine systems it is assumed that the dominant along-channel momentum balance is between the integrated pressure gradient and bed stress. Scaling the amplitude of the estuarine circulation based on this balance has been shown to have predictive skill. However, a number of authors recently highlighted important nonlinear processes that contribute to the subtidal dynamics at leading order. In this study, a previously validated numerical model of the Hudson River estuary is used to examine the forces driving the residual estuarine circulation and to test the predictive skill of two linear scaling relationships. Results demonstrate that the nonlinear advective acceleration terms contribute to the subtidal along-channel momentum balance at leading order. The contribution of these nonlinear terms is driven largely by secondary lateral flows. Under a range of forcing conditions in the model runs, the advective acceleration terms nearly always act in concert with the baroclinic pressure gradient, reinforcing the residual circulation. Despite the strong contribution of the nonlinear advective terms to the subtidal dynamical balance, a linear scaling accurately predicts the strength of the observed residual circulation in the model. However, this result is largely fortuitous, as this scaling does not account for two processes that are fundamental to the estuarine circulation. The skill of this scaling results because of the compensatory relationship between the contribution of the advective acceleration terms and the suppression of turbulence due to density stratification. Both of these processes, neither of which is accounted for in the linear scaling, increase the residual estuarine circulation but have an opposite dependence on tidal amplitude and, consequently, strength of stratification.This research was supported by the Beacon Institute for Rivers and Estuaries—Woods Hole Oceanographic Institution postdoctoral fellowship program, as well as NSF Grants OCE-0452054 and OCE-0451740
    corecore